首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  国内免费   5篇
环保管理   2篇
综合类   14篇
基础理论   4篇
污染及防治   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   4篇
  2006年   2篇
  2002年   1篇
  1999年   1篇
  1984年   1篇
排序方式: 共有21条查询结果,搜索用时 729 毫秒
1.
2.
对碳素纤维进行氧化改性,利用改性后的碳素纤维处理近岸污染海水,重点研究了改性碳素纤维对海水中活性磷酸盐和活性硅酸盐的吸附作用。考察了碳素纤维液相改性时间、碳素纤维投加量、活性磷酸盐初始浓度、活性硅酸盐初始浓度、吸附时间、海况、pH值等单因素对近岸海洋污染物磷酸盐、硅酸盐吸附效果的影响。研究结果表明:改性碳素纤维对硅酸盐的吸附效果较好,去除率可达70%,对活性磷酸盐的去除率为31%左右。通过正交实验确定改性碳素纤维材料修复模拟近岸海水的优化条件为:碳素纤维改性时间为1.5 h,投加量为0.01 g,硅酸盐初始浓度为3mg/L,磷酸盐初始浓度为20 mg/L,海况为3级,pH值为8,吸附时间为3 h。在此条件下,碳素纤维对磷酸盐的去除率可达31.06%,硅酸盐去除率可达70.88%。  相似文献   
3.
二氧化氯消毒前后污水毒性的变化及消毒条件的影响   总被引:2,自引:0,他引:2  
采用发光细菌试验和umu试验,分别考察了二氧化氯投加量和反应时间对污水二氧化氯消毒后急性毒性和遗传毒性变化的影响.结果表明,随着二氧化氯消毒剂投加量的增加,消毒后水样的急性毒性不断增大,但遗传毒性逐渐减小后趋于稳定.随着反应时间的延长,二氧化氯的消耗量不断增大,消毒后水样的急性毒性先增大后减小,遗传毒性逐渐减小后趋于稳定.由于消毒条件对污水急性毒性和遗传毒性有着不同的影响,说明污水中产生急性毒性和产生遗传毒性的物质不同,对于某一种污水,通过控制消毒条件可以使消毒后污水的急性毒性和遗传毒性都较低.  相似文献   
4.
多溴联苯醚(Polybrominated diphenyl ethers, PBDEs)为一类新型的溴代阻燃剂,广泛应用于塑料制品、纺织品、电路板和建筑材料等领域。随着生产量和使用量的增加,PBDEs已造成全球环境污染,其带来的环境问题已引起各国关注。同时PBDEs的长距离迁移性和难降解性,使其在环境介质中进行富集,从而加重污染。归纳了中国地区PBDEs的监测进展,分别从大气、水体、沉积物和土壤中PBDEs的污染水平以及原因进行了分析和探讨。在此基础上,对于我国PBDEs的研究方向提出了展望。  相似文献   
5.
基于卫星观测和气象再分析数据提取2003~2018年间中国森林绿度异常现象(月尺度LAI长期趋势的累积偏差), 并分析干旱对森林绿度异常影响的时空动态变化, 探究不同森林类型的干旱敏感性.结果表明: ①干旱导致的绿度异常现象频率分布呈现出南高北低的空间格局, 而高强度异常现象主要分布于中国的东北与西南地区.②2003~2018年间绿度异常严重程度呈现显著增加趋势(即绿度异常强度指数下降), 变化率为: -0.06/a(P<0.05), 而绿度异常面积比率下降, 变化率为-0.0049/a.③中国森林对干旱胁迫较为敏感的区域主要分布于云南北部与大兴安岭北部, 这是由区域的地质和气候特点以及植被类型共同作用导致的.④干旱主导区不同森林类型的干旱敏感性依次为: 阔叶林>针叶林>混交林, 绿度异常与SPEI回归斜率依次为1.8>1.3>1.2.⑤针叶林遭受的干旱强度最高, 2003~2018年间统计的SPEI中位数为-1.65, 绿度异常现象也最为严重, 多年绿度异常指数中位数为-1.81, 说明干旱强度而非敏感性主导了森林绿度异常的现象.  相似文献   
6.
毒死蜱的微波辅助无极汞灯光降解机理研究   总被引:2,自引:0,他引:2  
毒死蜱是目前全球应用最广泛的有机磷杀虫剂之一,光化学降解是其主要的环境降解途径.文章研究了毒死蜱在水相中微波辅助无极汞灯(MW-EDML)下光降解过程,并应用LC-MS法对其降解产物进行了鉴定.同时,采用量子化学方法中的密度泛函数方法B3LYP/6-31G(d)基组计算了毒死蜱的量子化学参数,探讨了其光降解特性与分子结...  相似文献   
7.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   
8.
伊逊河流域总磷污染来源解析   总被引:1,自引:1,他引:0       下载免费PDF全文
2017—2018年TP成为滦河一级支流伊逊河流域的主要污染因子,部分国控断面水质主要以GB 3838—2002《地表水环境质量标准》Ⅳ类、Ⅴ类为主.为开展伊逊河TP污染定量识别研究,在2017年和2018年伊逊河流域水体TP污染时空特征分析的基础上,从流域磷铁矿工业污染、城镇生活污水、雨水径流、河道内源释放以及农业非点源等方面开展TP污染研究.结果表明:①伊逊河流域上游至下游TP污染程度呈加剧恶化趋势,上游唐三营控制单元污染较轻,下游李台控制单元TP污染最重;丰水期TP污染较重,枯/平水期污染较轻;从年度看,2017年TP污染严重,2018年年均ρ(TP)下降了50.00%.②2017年、2018年伊逊河流域TP污染来源差异显著,2017年磷输入主要来自于磷铁矿工业污染,占比为33.46%;选矿企业整改后,2018年磷输入主要来源变为畜禽养殖和城镇生活污染,二者占比合计为59.91%.针对伊逊河流域TP污染特征,提出伊逊河流域TP污染控制建议:加强选矿企业环境监管,进一步完善监管体系;加强流域水土流失治理,实施矿山披绿;大力实施绿色农业工程,加强畜禽养殖布局优化.   相似文献   
9.
Kursar TA  Wolfe BT  Epps MJ  Coley PD 《Ecology》2006,87(12):3058-3069
We surveyed Lepidoptera found on 11 species of Inga (Fabaceae:Mimosoideae) co-existing on Barro Colorado Island, Panama, to evaluate factors influencing diet choice. Of the 47 species of caterpillars (747 individuals) recorded, each fed on a distinct set of Inga. In the field, 96% of the individuals were found on young leaves. Growth rates of caterpillars that were fed leaves in the laboratory were 60% higher on young leaves compared to mature leaves. When caterpillars were fed leaves of nonhost Inga, they grew more slowly. These data provide support for a link between preference and performance. However, among hosts on which larvae normally occurred, faster growth rates were not associated with greater host electivity (the proportion of larvae found on each host species in the field, corrected for host abundance). Growth rates on normal hosts were positively correlated with leaf expansion rates of the host, and fast expansion was associated with leaves with higher nutritional content. Detailed studies on a gelechiid leaf roller, the species with the largest diet breadth, allowed us to assess the importance of factors other than growth that could influence diet electivity. This species showed a 1.7-fold difference in growth rate among Inga hosts and faster growth on species with fast-expanding leaves. However, there was no correlation between caterpillar growth rate and abundance on different host species. Instead, abundance of the gelechiid on each Inga species was significantly correlated with the temporal predictability of food (synchrony of leaf flushing) and was negatively correlated with competition (amount of leaf area removed by species other than the gelechiid). Although rates of parasitism were high (23-43%), there were no differences among hosts. Parasitism was also not related to measures of escape, such as growth rates of caterpillars, leaf expansion rates, and synchrony of leaf production. Together, food availability, parasitism, and competition explained 84% of the variation in host preference by the gelechiid. We suggest that these ecological interactions may be particularly important in determining diet choice initially and that preferences may be reinforced by subsequent divergence in host chemistry and/or the herbivore's ability to tolerate the secondary metabolites.  相似文献   
10.
Interactions among plant defense compounds: a method for analysis   总被引:4,自引:0,他引:4  
Summary. Plants contain an enormous diversity and quantity of secondary metabolites, some of which are toxic and deterrent to herbivores and pathogens. This impressive diversity of plant compounds suggests a high probability of interactions among them. Synergistic interactions are those in which the combined activity of two or more chemicals is greater than that expected given their individual activities. On the other hand, antagonistic interactions are those in which the combined activity of two or more chemicals is less than that expected given their individual activities. Synergistic interactions could increase plant fitness whereas antagonistic interactions could decrease plant fitness. Interactions are thus potentially very important, not only in explaining the diversity of defense compounds within individual plants, but also in providing insight into plant defense strategies. Although synergistic interactions have received increased attention in the ecological literature in the last decade, the number of documented cases of synergy remains small and antagonistic interactions are rarely considered. The primary reason for this scarcity may be the difficulty of detecting, analyzing and displaying such interactions. Analysis by ANOVA, though sometimes used, often is not appropriate. We introduce a simple technique, isobolographic analysis, that is used in pharmacology for detecting and rigorously quantifying synergy and antagonism and provide an example using the brine shrimp toxicity assay. More statistically sophisticated approaches, such as isobolographic analysis, will allow ecologists to effectively document the role of chemical synergy and antagonism in interactions between species. Such chemical interactions may ultimately provide insight into longstanding, ecological questions. Received 26 October 1998; accepted 24 March 1999.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号