首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
  2013年   2篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
BaP is one of the most studied PAH, due to its ubiquitous presence in aquatic environments and toxicity to aquatic organisms. The main goal of this study was to assess BaP effects in Nile Tilapia after waterborne and dietary exposures, through the evaluation of EROD and GST activities in liver, gills and intestine, and BaP metabolites in bile; and also to evaluate the usefulness of these commonly used biomarkers after two different routes of exposure. Waterborne exposure to BaP led to a significant induction of EROD in all tissues analyzed (644%, 1640% and 2880% in relation to solvent in liver, gill and intestine respectively) while in dietary exposures EROD was induced only in intestine (3143%) after exposure to high BaP concentrations. GST activities with CDNB were slightly induced in liver (40%) and in gill (66%) after water exposure to BaP, and in intestine after dietary exposure to low BaP concentrations (182%). BaP metabolites in bile increased after both exposure routes, and were highly correlated with EROD activity after water exposure. In summary, this work has shown that the effects of BaP on biotransformation pathways depend on the route of exposure. Moreover, barrier tissues like gills and intestine also have an important role in the first-pass metabolism of BaP, reducing the amount of parent compound that reaches the liver to be metabolized. For that reason, EROD activity as a biomarker of exposure should also be applied in extrahepatic organs, like gills and intestine, in monitoring studies. Biliary BaP type metabolites are good reflectors of contamination levels under both exposure routes, while GST activity with CDNB as substrate, as a phase II enzyme, does not seem a reliable biomarker of exposure to BaP regardless the route of exposure.  相似文献   
2.
Despite the extensive maritime transportation of Hazardous and Noxious Substances (HNS), there is a current lack of knowledge on the effects posed by HNS spills on the marine biota. Among the HNS identified as priority, acrylonitrile was selected to conduct ecotoxicological assays. We assessed the acute and subletal effects of acrylonitrile in seabass, followed by a recovery phase to simulate the conditions of a spill incident. The work aimed at testing a broad range of biological responses induced by acrylonitrile. Sublethal exposure to the highest two doses increased the fish mortality rate (8.3% and 25% mortality in 0.75 and 2 mg L−1 acrylonitrile concentrations), whereas no mortality were observed in control and 0.15 mg L−1 treatments. Additionally, important alterations at sub-individual level were observed. Acrylonitrile significantly induced the activities of Catalase– CAT and Glutathione S-Transferase – GST; and the levels of DNA damage were significantly increased. Conversely, Superoxide Dismutase– SOD – activity was found to be significantly inhibited and no effects were found on Lipid Peroxidation– LPO and ethoxyresorufin O-deethylase – EROD – activity. Following a 7 d recovery period, the levels of CAT, GST and EROD fell to levels at or below those in the control. In the 2 mg L−1 group, SOD remained at the levels found during exposure phase. This study has gathered essential information on the acute and subletal toxicity of acrylonitrile to seabass. It also demonstrated that 7 d recovery allowed a return of most endpoints to background levels. These data will be useful to assist relevant bodies in preparedness and response to HNS spills.  相似文献   
3.
3-Hydroxy-benzo[a]pyrene (3-OH-BaP), a toxic compound with the ability to covalently bind with the macromolecules (proteins and DNA), is one of the major phenolic metabolites of benzo[a]pyrene (BaP). The purpose of this study was to evaluate the presence of 3-OH-BaP in the bile and plasma of Nile tilapia by HPLC with fluorescence detection, after waterborne exposure to BaP (10 and 100?µg?L?1). Metabolites were detected in bile and plasma, and conjugates of 3-OH-BaP (glucuronide and/or sulphate conjugates) were the majority forms in both biological fluids, glucuronide 3-OH-BaP being the main metabolite in bile. Our data suggest that extrahepatic tissues as intestine or gill are important in BaP metabolism and need to be the considered sources of metabolites released into the blood. Although, low levels of 3-OH-BaP in toxic form (free form) were detected in plasma, one cannot exclude the possibility of circulating the levels leading to adverse effects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号