首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   1篇
安全科学   2篇
环保管理   7篇
综合类   1篇
基础理论   84篇
污染及防治   1篇
评价与监测   1篇
灾害及防治   2篇
  2016年   1篇
  2014年   7篇
  2013年   10篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   12篇
  2006年   9篇
  2005年   8篇
  2004年   11篇
  2002年   4篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
1.
Abstract: Ecological restoration is a key component of biological conservation. Nevertheless, unlike protection of existing areas, restoration changes existing land use and can therefore be more controversial. Some restoration projects negatively affect surrounding landowners, creating social constraints to restoration success. Just as negative off‐site impacts (i.e., negative externalities) flow from industrial areas to natural areas, restoration projects can generate negative externalities for commercial land uses, such as agriculture. Negative externalities from industry have led to government regulation to prevent human health and environmental impacts. Negative externalities from restoration projects have elicited similar legal constraint on at least one large‐scale conservation project, riparian restoration in the Sacramento River Conservation Area. The negative externalities of restoration that are perceived to be the direct result of specific goals, such as endangered species management, are likely to be more contentious than externalities arising from unintended phenomena such as weed invasion. Restoration planners should give equal consideration to off‐site characteristics as to on‐site characteristics when choosing sites for restoration and designing projects. Efforts to control externalities can lead to off‐site ecological benefits.  相似文献   
2.
3.
Population Viability Analysis   总被引:12,自引:0,他引:12  
  相似文献   
4.
5.
Establishing IUCN Red List Criteria for Threatened Ecosystems   总被引:1,自引:0,他引:1  
Abstract: The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.  相似文献   
6.
Quantifying Plant Population Persistence in Human-Dominated Landscapes   总被引:1,自引:0,他引:1  
Abstract:  We assessed population performance of rare plants across a gradient from rural to urban landscapes and evaluated 2 hypotheses central to strategic conservation planning: (1) population performance declines with increasing human dominance and (2) small populations perform poorly relative to larger ones. Assessing these hypotheses is critical to strategic conservation planning. The current conservation paradigm adheres to the well-established ecology theory that small isolated populations, particularly those in human-dominated landscapes, are the least likely to succeed over the long term. Consequently, conservation planning has strongly favored large, remote targets for protection. This shift in conservation toward ecosystem-based programs and protection of populations within large, remote systems has been at the expense of protection of the rarest of the rare species, the dominant paradigm for conservation driven by the endangered species act. Yet, avoiding conservation of small populations appears to be based more on theoretical understanding and expert opinion than empiricism. We used Natural Heritage data from California in an assessment of population performance of rare plants across a landscape with an urban-rural gradient. Population performance did not decrease in urban settings or for populations that were initially small. Our results are consistent with a pattern of few species extinctions within these landscapes over the past several decades. We conclude that these populations within compromised landscapes can contribute to overall biodiversity conservation. We further argue that conservation planning for biodiversity preservation should allocate relatively more resources to protecting urban-associated plant taxa because they may provide conservation benefit beyond simply protecting isolated populations; they may be useful in building social interest in conservation.  相似文献   
7.
Abstract: Conservation and restoration goals are often defined by historical baseline conditions that occurred prior to a particular period of human disturbance, such as European settlement in North America. Nevertheless, if ecosystems were heavily influenced by native peoples prior to European settlement, conservation efforts may require active management rather than simple removal of or reductions in recent forms of disturbance. We used pre‐European settlement land survey records (1859–1874) and contemporary vegetation surveys to assess changes over the past 150 years in tree species and habitat composition, forest density, and tree size structure on southern Vancouver Island and Saltspring Island, British Columbia, Canada. Several lines of evidence support the hypothesis that frequent historical burning by native peoples, and subsequent fire suppression, have played dominant roles in shaping this landscape. First, the relative frequency of fire‐sensitive species (e.g., cedar [Thuja plicata]) has increased, whereas fire‐tolerant species (e.g., Douglas‐fir [Pseudotsuga menziesii]) have decreased. Tree density has increased 2‐fold, and the proportion of the landscape in forest has greatly increased at the expense of open habitats (plains, savannas), which today contain most of the region's threatened species. Finally, the frequency distribution of tree size has shifted from unimodal to monotonically decreasing, which suggests removal of an important barrier to tree recruitment. In addition, although most of the open habitats are associated with Garry oak (Quercus garryana) at present, most of the open habitats prior to European settlement were associated with Douglas‐fir, which suggests that the current focus on Garry oak as a flagship for the many rare species in savannas may be misguided. Overall, our results indicate that the maintenance and restoration of open habitats will require active management and that historical records can provide critical guidance to such efforts.  相似文献   
8.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   
9.
Abstract: Maintenance of viable populations of many endangered species will require conservation action in perpetuity. Efforts to conserve these species are more likely to be successful if their reliance on conservation actions is assessed at the population level. Woodland caribou (Rangifer tarandus caribou) were extirpated recently from Banff National Park, Canada, and translocations of caribou to Banff and neighboring Jasper National Park are being considered. We used population viability analysis to assess the relative need for and benefits from translocation of individuals among caribou populations. We measured stochastic growth rates and the probability of quasi extinction of four populations of woodland caribou with and without translocation. We used two vital rates in our analysis: mean adult female survival and mean number of calves per breeding‐age female as estimates of mean fecundity. We isolated process variance for each vital rate. Our results suggested the Tonquin caribou population in Jasper is likely to remain viable without translocation, but that translocation is probably insufficient to prevent eventual extirpation of the two other populations in Jasper. Simulated reintroductions of caribou into Banff resulted in a 53–98% probability of >8 females remaining after 20 years, which suggests translocation may be an effective recovery tool for some caribou populations.  相似文献   
10.
Abstract: Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species’ recovery efforts. Controls in translocation or artificial‐propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km2 of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem‐induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild‐ and hatchery‐origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in‐river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two‐thirds less than survival of wild in‐river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in‐river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in the ocean. Our results highlight the importance of considering the interacting effects of translocation, artificial propagation, and environmental variables on the long‐term viability of species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号