首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   6篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2005年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Abstract:  Biodiversity indicator species are needed for classifying biotopes and sites for conservation, and a number of methods have been developed for determining indicator species for this purpose. Nevertheless, in addition to site classification, there is sometimes a need to define an indicator species that indicates the occurrence of another species. For example, when a species of interest (target species) is difficult to detect or identify, a reliable indicator species can function as a tool that saves time and money. We derived a method that provides a quantitative measure of the indicator power (IP) of an indicator species for the target species or any species assemblage. We calculated the measure of IP from a presence–absence matrix that covered several sites. The method provided a list of indicator species, the presence of which reliably indicated the presence of another species (e.g., a threatened or rare species in a given area). The IP of the species was highest when the number of shared occurrences between the indicator species and the target species was high and, simultaneously, when the indicator species and the target species occurred separately in only a few cases. The IP was also positively influenced by the number of sites with no occurrences of either the indicator or the target species. Our method can also be used to quantify different types of species occurrence indications. We refer to these types as presence–presence, presence–absence, absence–presence, and absence–absence indications. To clarify the use of the method, we examined the situation with red-listed polypores in White-backed Woodpecker (Dendrocopos leucotos) habitats in Fennoscandia and found some suitable indicator species. Our method provides a new, objective way to evaluate the IP of an indicator species.  相似文献   
3.
Abstract: Current networks of protected areas are biased in many countries toward landscapes of low productivity. Voluntary conservation incentives have been suggested as a socially acceptable way to supplement existing networks with more productive, privately owned areas of high priority for nature conservation. The limited resources committed to nature conservation demand cost‐efficiency. Efficiency, however, depends not only on costs incurred to society from alternative ways of maintaining biodiversity but also on ecological values that can be captured. We examined the ecological efficiency of the new market‐based voluntary program to preserve forest habitats on private land in southwestern Finland. We compared sites that have become protected (10‐year contracts) in the program with managed forests, with sites that have been negotiated for protection for which no contract has been signed, and with the most ecologically valuable privately owned sites in the region that have not been offered for protection by forest owners. We surveyed sites for the amount of dead wood, wood‐decomposing fungi, and epiphytic lichens to evaluate their ecological quality. Contracted sites had more features important for overall biodiversity than managed forests and negotiated sites with no contract. These results indicate that procedures used during site selection and negotiations were appropriate and not opportunistic. The contracted sites were also as valuable in ecological terms as the best, still‐unprotected, privately owned forests in the region that have not been offered for protection. We conclude that voluntary conservation programs have the potential to yield ecologically valuable sites for protection if the site‐selection procedures are appropriate. Reliance on completely voluntary programs, however, may entail uncertainties and inadequacies, for example, in terms of spatial configuration and persistence of the ecological values. Thus, such programs may often need to be supplemented with alternative methods such as land purchase to achieve an ecologically effective network of protected sites.  相似文献   
4.
5.
Demographic Responses by Birds to Forest Fragmentation   总被引:1,自引:0,他引:1  
Abstract:  Despite intensive recent research on the effects of habitat loss and fragmentation on bird populations, our understanding of underlying demographic causes of population declines is limited. We reviewed avian demography in relation to habitat fragmentation. Then, through a meta-analysis, we compared specific demographic responses by forest birds to habitat fragmentation, providing a general perspective of factors that make some species and populations more vulnerable to fragmentation than others. We obtained data from the scientific literature on dispersal, survival, fecundity, and nesting success of birds. Birds were divided into subgroups on the basis of region, nest site, biogeographical history, and migration strategy. Species most sensitive to fragmentation were ground- or open-nesters nesting in shrubs or trees. Residents were equally sensitive to fragmentation in the Nearctic and Palearctic regions, but Nearctic migrants were more sensitive than Palearctic migrants. Old World species were less sensitive than New World species, which was predicted based on the history of forest fragmentation on these two continents. Pairing success was the variable most associated with fragmentation, suggesting an important role of dispersal. Fledgling number or condition, timing of nesting, and clutch size were not associated with sensitivity to fragmentation, suggesting that negative fragmentation effects on birds do not generally result from diminished food resources with increasing level of fragmentation. Future studies on demographic responses of birds to habitat fragmentation would be more effective if based on a combination of measures that can distinguish among the demographic mechanisms underlying population changes related to habitat fragmentation.  相似文献   
6.
Abstract:  Decaying wood is one of the most important elements for species richness in boreal forests. We tested how well reserve selection based on the amount and quality of decaying wood results in a representation of four ecologically different taxa (beetles, birds, wood-inhabiting fungi, and vascular plants). We also compared the cost-efficiency of the use of dead-wood indicators with comprehensive species inventory. Our database included 32 seminatural old-forest stands located in northern Finland. Decaying wood was a relatively good indicator of saproxylic species but not overall species richness. Even though dead wood did not reflect accurately overall species richness, our results indicated that the use of decaying wood as an indicator in site selection was more cost-efficient than using information from large-scale species inventories. Thus, decaying wood is a valuable surrogate for species richness, but other cost-efficient indicators that reflect the requirements of those species which are not dependent on decaying wood should be identified.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号