首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
基础理论   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 140 毫秒
1
1.
Roads function as prime habitats and corridors for invasive plant species. Yet despite the diversity of road types, there is little research on the influence of these types on the spread of invaders. Common ragweed (Ambrosia artemisiifolia), a plant producing large amounts of allergenic pollen, was selected as a species model for examining the impact of road type on the spread of invasive plants. We examined this relationship in an agricultural region of Quebec, Canada. We mapped plant distribution along different road types, and constructed a model of species presence. Common ragweed was found in almost all sampling sites located along regional (97%) and local paved (81%) roads. However, verges of unpaved local roads were rarely (13%) colonized by the plant. A model (53% of variance explained), constructed with only four variables (paved regional roads, paved local roads, recently mown road verges, forest cover), correctly predicted (success rate: 89%) the spatial distribution of common ragweed. Results support the hypothesis that attributes associated with paved roads strongly favour the spread of an opportunistic invasive plant species. Specifically, larger verges and greater disturbance associated with higher traffic volume create propitious conditions for common ragweed. To date, emphasis has been placed on controlling the plant in agricultural fields, even though roadsides are probably a much larger seed source. Strategies for controlling the weed along roads have only focused on major highways, even though the considerable populations along local roads also contribute to the production of pollen. Management prioritizations developed to control common ragweed are thus questionable.  相似文献   
2.
Previous studies have suggested that the high diversity associated with the Norfolk seamounts (Southwest Pacific) could reflect endemism resulting from limited dispersal due to hydrological phenomena. Crustaceans of the family Galatheidae are thoroughly studied in the New Caledonia economic zone permitting the analysis of species distribution pattern between the New Caledonia slope and Norfolk ridge seamounts. This analysis has shown that, qualitatively, the same species are sampled on seamounts and on the New Caledonia slope. Local endemism was never detected. However, on each seamount, and therefore on a small surface, a very high number of species are usually sampled, suggesting that seamounts are biodiversity hot spots. Then, to evaluate whether the seamounts constitute patches of isolated habitat, we explore the pattern of genetic diversity within several species of crustaceans and gastropods. Analysis of the intra-specific genetic structure using the mitochondrial marker COI reveals that populations of two Galatheidae species (Munida thoe and Munida zebra), polymorphic for this marker, are genetically not structured, both among seamounts and between the seamounts and the island slope. The genetic structure over a similar sampling scheme of two Eumunida species (Chirostylidae, the sister family of Galatheidae) and a planktotrophic gastropod (Sassia remensa) reveals a similar pattern. Population structure is observed only in Nassaria problematica, a non-planktotrophic gastropod with limited larvae dispersal. Thus, the limitation of gene flow between seamounts appears to be observed only for species with limited dispersal abilities. Our results suggest that the Norfolk seamounts rather than functioning as areas of endemism, instead, may be highly productive zones that can support numerous species in small areas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号