首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   7篇
安全科学   1篇
废物处理   2篇
综合类   11篇
基础理论   7篇
污染及防治   14篇
评价与监测   4篇
社会与环境   6篇
灾害及防治   1篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2009年   4篇
  2008年   1篇
  2006年   2篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV- Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13 C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13 C NMR are among the techniques that are introduced for the first time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance.  相似文献   
2.
Peat respiration that releases carbon dioxide (CO2) to the atmosphere contributes to regional and global change. Aeration associated with soil water content levels controls emission rates, but soil amendments might mitigate respiration. The objectives of this study were to examine the effects of various water content levels and laterite application on microbial (heterotrophic) respiration in peat soil. Bulk samples of surface (0–20 cm depth) and subsurface (30–50 cm depth) layers were collected from an oil palm plantation in Riau Province, Indonesia. Peat water content was adjusted to 20, 40, 60, 80, and 100 % water filled pore space (WFPS). Laterite soil (clay containing high Al and Fe oxides) was applied to 3, 6, and 12 mg g?1 dry weight (1.2, 2.4, and 4.8 Mg ha?1) peat samples at 60 % and 100 % WFPS. Results showed peat respiration was notably affected by water content, but less affected by laterite application. Peat respiration increased sharply from wet (≥80 % WFPS) to moist soil (60 to 40 % WFPS), and decreased when soil dried (≤40 % WFPS). Laterite as a peat ameliorant accelerated rather than reduced peat respiration, and is therefore not a viable choice for CO2 emissions reduction.  相似文献   
3.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   
4.
5.
Biofilm fermentation is a newly developed promising technique in fermentation technology. In this study no.3 and no.3S media have been used for the lipopeptide antibiotic iturin A production by Bacillus subtilis RB14. The main component of no.3 and no.3S media is Polypepton and Polypepton S, respectively. B. subtilis RB14 produces thick stable biofilm and high amount of iturin A in no.3S medium. Whereas, impaired biofilm formation and lower iturin A production was observed in no.3 medium. From the analytical information it was observed that the amounts of metal ions, such as K+, Ca2+ and Mn2+, cysteine and cellulose are lower in Polypepton compared to the Polypepton S. To investigate their effect on biofilm formation and iturin A production cysteine, cellulose, K+, Ca2+ and Mn2+ were added respectively into the no.3 medium at similar amount that Polypepton S contains. It was observed that individual addition of K+, Ca2+, cysteine and cellulose had no effect on biofilm formation, cellular growth induction or iturin A production. However, when Mn2+ was supplemented in no.3 medium, biofilm development was restored with an improved production of iturin A. Finally, combined addition of investigated substances into the no.3 medium resulted with highly folded, thick biofilm with high cellular growth and iturin A production compared to the original no.3 medium.  相似文献   
6.

The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01–0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20–0.67 and 0.71–0.82), while lower values were observed for non-exposed subjects (r = 0.123–0.423 and 0.331–0.425), respectively.

  相似文献   
7.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving and four variants of concern have been identified so far, including Alpha, Beta, Gamma and Delta variants. Here we review the indirect effect of preventive measures such as the implementation of lockdowns, mandatory face masks, and vaccination programs, to control the spread of the different variants of this infectious virus on the environment. We found that all these measures have a considerable environmental impact, notably on waste generation and air pollution. Waste generation is increased due to the implementation of all these preventive measures. While lockdowns decrease air pollution, unsustainable management of face mask waste and temperature-controlled supply chains of vaccination potentially increases air pollution.

  相似文献   
8.
An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L, respectively. Also, the rate of methane production reached 169.0 mL CH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.  相似文献   
9.

Improved agricultural practices that increase yields and preserve soils are critical to addressing food insecurity and undernutrition among smallholder farmer families. Urine-enriched biochar has been shown to be an accessible and effective fertilization option in various subtropical countries; however, it is new to Bangladesh. To better understand attitudes and experiences preparing and using urine-enriched biochar fertilizer, mixed-methods research was undertaken among smallholder farmers in northeastern Bangladesh in 2016/2017. In-depth interviews were conducted with 25 respondents who had compared the production of crops grown with biochar-based fertilizer to usual practice. In addition, in areas where trainings on biochar-based fertilization had been offered, 845 farmers were asked about their experience through a quantitative survey. Interview results indicated that cow urine-enriched biochar was favored over human urine because cow urine was perceived as clean and socially acceptable, whereas human urine was considered impure and disgusting. Respondents praised biochar-based fertilizer because it increased yields, cost little, was convenient to prepare with readily available natural materials, produced tastier crops, and allowed families to share their larger yields which in turn enhanced social and financial capital. Comparative field trials indicated a 60% yield benefit in both cabbage and kohlrabi crops. Challenges included uneven access to ingredients, with some respondents having difficulty procuring cow urine and biomass feedstock. The low social, health, and financial risk of adoption and the perceived benefits motivated farmers to produce and apply biochar-based fertilizer in their gardens, demonstrating strong potential for scale-up of this technology in Bangladesh.

  相似文献   
10.
In the current study, the chemistry of fresh and stored rainwater of Thar Desert, Pakistan, was estimated during two consecutive monsoon periods. The present research deals with the variation in physicochemical parameters, total arsenic (Ast), inorganic arsenic species (Asi, AsV, AsIII), and fluoride (F?) in stored rainwater (SRW) at different time intervals (1 week to 3 months). The pH of fresh rainwater (FRW) samples showed slightly acidic to neutral in nature (6.08–7.06) which were inconsistent with the reference pH value (5.6) of rainwater. The resulted data indicated that Ast and F? levels in SRW were enhanced with time duration. The levels of Ast and F? in SRW after different time intervals were found in the range of 194–683 μg/L and 10–35.4 mg/L, respectively. The values of Ast and F? were 20–70 and 7–24 times higher than those of WHO permissible limits, 10 μg/L and 1.5 mg/L, respectively. The AsIII was dominant species in SRW, which corresponds to >60 % of Asi. The characteristics of the SRW revealed an unacceptable quality to consume for drinking and agricultural purposes in the studied area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号