首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   3篇
基础理论   15篇
  2021年   1篇
  2016年   3篇
  2014年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The designation of no‐take marine reserves involves social and economic concerns due to the resulting displacement of fishing effort, when fishing rights are removed from those who traditionally fished within an area. Displacement can influence the functioning of the fishery and success of the reserve, yet levels of displacement are seldom quantified after reserve implementation and very rarely before that. We devised a simple analytical framework based on set theory to facilitate reserve placement. Implementation of the framework requires maps of fishing grounds, fishing effort, or catch per unit effort for at least 2 years. The framework quantifies the level of conflict that a reserve designation might cause in the fishing sector due to displacement and the opportunities to offset the conflict through fisher spatial mobility (i.e., ability of fishers to fish elsewhere). We also considered how the outputs of the framework can be used to identify targeted management interventions for each fishery. We applied the method in Honduras, where the largest marine protected area in Central America is being placed, for which spatial data on fishing effort were available for 6 fisheries over 3 years. The proposed closure had a greater negative impact on the shrimp and lobster scuba fisheries, which concentrated respectively 28% and 18% of their effort inside the reserve. These fisheries could not accommodate the displacement within existing fishing grounds. Both would be forced to stretch into new fishing grounds, which are available but are of unknown quality. These stakeholders will likely require compensation to offset costly exploratory fishing or to travel to fishing grounds farther away from port.  相似文献   
2.
In April-May 1998, mass coral bleaching was observed in the lagoon of Rangiroa Atoll, Tuamotu Archipelago, French Polynesia. Six months later, the extent of bleaching-induced coral mortality was assessed at three sites. Corals in the fast-growing genus Pocillopora had experienced >99% mortality. Many large colonies of the slow-growing genus Porites (mean horizontal cross-sectional area 5.8 m2) had also died - a phenomenon not previously observed in French Polynesia and virtually unprecedented world-wide. At one site, 25% of colonies, or 44% of the pre-bleaching cover of living Porites, experienced whole-colony mortality. At the two other sites, recently dead Porites accounted for 41% and 82% of the pre-bleaching live cover. Mortality in Porites was negatively correlated with depth between 1.5 and 5 m. Using a 50-year dataset of mean monthly sea surface temperature (SST), derived from ship- and satellite-borne instruments, we show that bleaching occurred during a period of exceptionally high summer SST. 1998 was the first year in which mean monthly SSTs exceeded the 1961-1990 upper 95% confidence limit (29.4°C) for a period of three consecutive months. We suggest that the sustained 3-month anomaly in local summer SST was a major cause of coral mortality, but do not discount the synergistic effect of solar radiation. Recovery of the size-frequency distribution of Porites colonies to pre-bleaching levels may take at least 100 years.  相似文献   
3.
Modeling the beta diversity of coral reefs   总被引:1,自引:0,他引:1  
Quantifying the beta diversity (species replacement along spatiotemporal gradients) of ecosystems is important for understanding and conserving patterns of biodiversity. However, virtually all studies of beta diversity focus on one-dimensional transects orientated along a specific environmental gradient that is defined a priori. By ignoring a second spatial dimension and the associated changes in species composition and environmental gradients, this approach may provide limited insight into the full pattern of beta diversity. Here, we use remotely sensed imagery to quantify beta diversity continuously, in two dimensions, and at multiple scales across an entire tropical marine seascape. We then show that beta diversity can be modeled (0.852 > or = r2 > or = 0.590) at spatial scales between 0.5 and 5.0 km2, using the environmental variables of mean and variance of depth and wave exposure. Beta diversity, quantified within a "window" of a given size, is positively correlated to the range of environmental conditions within that window. For example, beta diversity increases with increasing variance of depth. By analyzing such relationships across seascapes, this study provides a framework for a range of disparate coral reef literature including studies of zonation, diversity, and disturbance. Using supporting evidence from soft-bottom communities, we hypothesize that depth will be an important variable for modeling beta diversity in a range of marine systems. We discuss the implications of our results for the design of marine reserves.  相似文献   
4.
Sponges constitute an abundant and functionally important component of coral reef systems. Given their demonstrated resistance to environmental stress, it might be expected that the role of sponges in reef systems under modern regimes of frequent and severe disturbance may become even more substantial. Disturbances have recently reshaped the community structure of many Caribbean coral reefs shifting them towards a state of persistent low coral cover and often a dominance of macroalgae. Using competition and growth rates recorded from Glover's Atoll in Belize, we parameterise a mathematical model used to simulate the three-way competition between sponges, macroalgae and coral. We use the model to determine the range of parameters in which each of the three species might be expected to dominate. Emergent properties arise from our simple model of this complex system, and these include a special case in which heightened competitive ability of macroalgae versus coral may counter-intuitively prove to be advantageous to the persistence of corals. Importantly, we show that even under scenarios whereby sponges fail to invade the system, inclusion of this third antagonist can qualitatively affect the likelihood of alternative stable states - generally in favour of macroalgal dominance. The interplay between multi-species competition and predation is complex, but our efforts highlight a key process that has, until now, remained unexplored: the extent to which sponges dissipate algal grazing pressure by providing generalist fish with an alternative food source. We highlight the necessity of identifying the extent by which this process takes place in tropical systems in order to improve projections of alternative stable states for Caribbean coral reefs.  相似文献   
5.
Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.  相似文献   
6.
Macroalgae are a major benthic component of coral reefs and their dynamics influence the resilience of coral reefs to disturbance. However, the relative importance of physical and ecological processes in driving macroalgal dynamics is poorly understood. Here we develop a Bayesian belief network (BBN) model to integrate many of these processes and predict the growth of coral reef macroalgae. Bayesian belief networks use probabilistic relationships rather than deterministic rules to quantify the cause and effect assumptions. The model was developed using both new empirical data and quantified relationships elicited from previous studies. We demonstrate the efficacy of the BBN to predict the dynamics of a common Caribbean macroalgal genus Dictyota. Predictions of the model have an average accuracy of 55% (implying that 55% of the predicted categories of Dictyota cover were assigned to the correct class). Sensitivity analysis suggested that macroalgal dynamics were primarily driven by top–down processes of grazing rather than bottom–up nutrification. BBNs provide a useful framework for modelling complex systems, identifying gaps in our scientific understanding and communicating the complexities of the associated uncertainties in an explicit manner to stakeholders. We anticipate that accuracies will improve as new data are added to the model.  相似文献   
7.
Coral reef habitat mapping: how much detail can remote sensing provide?   总被引:12,自引:0,他引:12  
The capability of satellite and airborne remote-sensing methods for mapping Caribbean coral reefs is evaluated. Reef habitats were categorised into coarse, intermediate and fine detail, using hierarchical classification of field data (percent cover in 1 m quadrats and seagrass standing-crop). Habitats were defined as assemblages of benthic macro-organisms and substrata and were mapped using the satellite sensors Landsat MSS, Landsat TM, SPOT XS, SPOT Pan and merged Landsat TM/SPOT Pan. Habitats were also mapped using the high-resolution digital airborne sensor, CASI (compact airborne spectrographic imager). To map areas >60 km in any direction with coarse detail, Landsat TM was the most accurate and cost-effective satellite sensor (SPOT XS when <60 km). For maps with intermediate habitat detail, aerial photography (from a comparable study in Anguilla) exhibited similar accuracy to Landsat TM, SPOT XS, SPOT Pan and merged Landsat TM/SPOT Pan. Landsat MSS was consistently the least accurate sensor. Maps from CASI were significantly (p<0.001) more accurate than satellite sensors and aerial photographs. Maps with detailed habitat information (i.e. >9 reef classes) had a maximum accuracy of 37% when based on satellite imagery, but aerial photography and CASI achieved accuracies of 67 and 81%, respectively. Commissioning of new aerial photography does not appear to be a cost-effective option; satellites are cheaper for coarse habitat-mapping, and detailed habitat-mapping can be conducted more accurately and cheaply with CASI. The results will guide practitioners in matching survey objectives to appropriate remote-sensing methods. Received: 11 July 1997 / Accepted: 6 August 1997  相似文献   
8.
The 1997/1998 El Niño Southern Oscillation (ENSO) was the most severe coral bleaching event in recent history, resulting in the loss of 16 % of the world’s coral reefs. Mortality was particularly severe in French Polynesia, where unprecedented mortality of massive Porites was observed in lagoonal sites of Rangiroa Atoll. To assess the recovery of massive Porites 15 years later, we resurveyed the size structure and extent of partial mortality of massive Porites at Tivaru (Rangiroa). Surveys revealed an abundance of massive Porites colonies rising from the shallow lagoonal floor. Colony width averaged 2.65 m, reaching a maximum of 7.1 m (estimated age of ~391 ± 107 years old). The relative cover of recently dead skeleton within quadrats declined from 42.8 % in 1998 to zero in 2013, yet the relative cover of old dead skeleton increased only marginally from 22.1 % in 1998 to 26.1 % in 2013. At a colony level, the proportion of Porites dominated by living tissue increased from 34.9 % in 1998 to 73.9 % in 2013, indicating rapid recovery of recent dead skeleton to living tissue rather than transitioning to old dead skeleton. Such rapid post-bleaching recovery is unprecedented in massive Porites and resulted from remarkable self-regeneration termed the ‘Phoenix effect’, whereby remnant cryptic patches of tissue that survived the 1997/1998 ENSO event regenerated and rapidly overgrew adjacent dead skeleton. Contrary to our earlier predictions, not only are large massive Porites relatively resistant to stress, they appear to have a remarkable capacity for recovery even after severe partial mortality.  相似文献   
9.
The interaction between multiple stressors on Caribbean coral reefs, namely, fishing effort and hurricane impacts, is a key element in the future sustainability of reefs. We develop an analytic model of coral-algal interactions and explicitly consider grazing by herbivorous reef fish. Further, we consider changes in structural complexity, or rugosity, in addition to the direct impacts of hurricanes, which are implemented as stochastic jump processes. The model simulations consider various levels of fishing effort corresponding to' several hurricane frequencies and impact levels dependent on geographic location. We focus on relatively short time scales so we do not explicitly include changes in ocean temperature, chemistry, or sea level rise. The general features of our approach would, however, apply to these other stressors and to the management of other systems in the face of multiple stressors. It is determined that the appropriate management policy, either local reef restoration or fisheries management, greatly depends on hurricane frequency and impact level. For sufficiently low hurricane impact and macroalgal growth rate, our results indicate that regions with lower-frequency hurricanes require stricter fishing regulations, whereas management in regions with higher-frequency hurricanes might be less concerned with enhancing grazing and instead consider whether local-scale restorative activities to increase vertical structure are cost-effective.  相似文献   
10.
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long‐term inertia and short‐term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management‐decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time‐scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long‐term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short‐sighted behavior to make it less appealing. Additional application of these tools and long‐term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号