首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
基础理论   18篇
污染及防治   3篇
  2019年   4篇
  2018年   3篇
  2017年   10篇
  2015年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Floodplain soils at the Elbe river are frequently polluted with metals and arsenic. High contents of these pollutants were detected down to subsoil layers. NH4NO3-extractable (phytoavailable) Cd, Ni, and Zn were elevated in horizons with high acidity. Among five common floodplain plant species, Artemisia vulgaris showed highest concentrations of Cd, Cu, and Hg, Alopecurus pratensis of As and Phalaris arundinacea of Ni, Pb, and Zn. Relationships were weak between metal concentrations in plants and phytoavailable stocks in soil. As and Hg uptake seems to be enhanced on long submerged soils. Enrichments of Cd and Hg are linked to a special plant community composition. Grassland herbage sampled in July/August revealed higher concentrations of As (+122%), Hg (+124%), and Pb (+3723%) than in May. To limit harmful transfers into the food chain, low-lying terraces and flood channels revealing highest contaminations or phytoavailabilities should be excluded from mowing and grazing.  相似文献   
2.
Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg?1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary.  相似文献   
3.
European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.  相似文献   
4.
Environmental Geochemistry and Health - Extreme flooding in May, 2014 affected the sub-catchments of six major rivers in Serbia. The goal of the study was to evaluate the contents of potentially...  相似文献   
5.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published.  相似文献   
6.
7.
Soil reclamation via additives can cause contradictory effects on the mobilization of toxic elements in soils under dry and wet conditions. Therefore, our aim was to investigate the impact of compost and sulfur in two rates (1.25 and 2.5%) on fractionation, mobilization, and phyto-availability of cadmium (Cd) and nickel (Ni) to sorghum (dry soil) and barnyard grass (wet soil) in a fluvial soil spiked with 25 mg Cd or 200 mg Ni/kg soil. Compost decreased the solubility and mobilization of Cd (especially in dry soil) and Ni (in both soils). Sulfur increased the solubility of Cd (31% in dry soil—49% in wet soil) and Ni (4.6% in wet soil—8.7% in dry soil). Sulfur altered the carbonate fraction of Cd to the soluble fraction and the residual fraction of Cd and Ni to the non-residual fraction. Compost decreased Cd and increased Ni in sorghum, but enhanced Cd and degraded Ni in grass. Sulfur increased Cd and Ni in both plants, and the increasing rate of Cd was higher in grass than in sorghum, while Ni was higher in sorghum than in grass. These results suggest that compost can be used as an immobilizing agent for Cd in the dry soil and Ni in the wet soil; however, it might be used as mobilizing agent for Cd in the wet soil and Ni in the dry soil. Sulfur (with rate 2.5%) can be used for enhancing the phyto-extraction of Cd and Ni (especially Cd) from contaminated alkaline soils.  相似文献   
8.
The hydrothermal carbonization of sewage sludge has been studied as an alternative technique for the conversion of sewage sludge into value-added products, such as soil amendments. We tested the toxicity of biosolid hydrochar (Sewchar) to earthworms. Additionally, the toxicity of Sewchar process water filtrate with and without pH adjustment was assessed, using brine shrimps as a model organism. For a Sewchar application of 40 Mg ha?1, the earthworms significantly preferred the side of the vessel with the reference soil (control) over side of the vessel with the Sewchar treatments. There was no acute toxicity of Sewchar to earthworms within the studied concentration range (up to 80 Mg ha?1). Regarding the Sewchar process water filtrate, the median lethal concentration (LC50) to the shrimps was 8.1% for the treatments in which the pH was not adjusted and 54.8% for the treatments in which the pH was adjusted to 8.5. The lethality to the shrimps significantly increased as the amount of Sewchar process water filtrate increased. In the future, specific toxic substances in Sewchar and its process water filtrate, as well as their interactions with soil properties and their impacts on organisms, should be elucidated. Additionally, it should be identified whether the amount of the toxic compounds satisfies the corresponding legal requirements for the safe application of Sewchar and its process water filtrate.  相似文献   
9.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
10.
Environmental Geochemistry and Health - Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号