首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   4篇
  国内免费   3篇
安全科学   4篇
废物处理   15篇
环保管理   35篇
综合类   56篇
基础理论   73篇
污染及防治   128篇
评价与监测   24篇
社会与环境   7篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   16篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   21篇
  2012年   14篇
  2011年   23篇
  2010年   9篇
  2009年   7篇
  2008年   23篇
  2007年   21篇
  2006年   15篇
  2005年   19篇
  2004年   10篇
  2003年   12篇
  2002年   15篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1996年   13篇
  1995年   8篇
  1994年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1973年   1篇
  1967年   1篇
  1965年   1篇
  1960年   3篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1956年   1篇
  1955年   2篇
  1954年   1篇
排序方式: 共有343条查询结果,搜索用时 78 毫秒
1.
2.
3.
4.
采用分户处理的方式对厕所废水进行单独处理是迅速改善乡村地区生活卫生条件的捷径。部分亚硝化-厌氧氨氧化方法的出现为分户厕所废水的处理提供了更为可持续的工艺选项。亚硝化反应是厌氧氨氧化反应的先决性步骤。以分户厕所废水为处理对象,在不接种亚硝化污泥的前提下,考察了在厕所废水预处理单元接种厌氧污泥对亚硝化反应启动的影响。结果表明,厌氧污泥的接种可将亚硝化反应的启动周期缩短至正常周期的50%,其作用机理位削弱了异养细菌对氨氧化细菌的竞争性抑制。以上研究结果可为分户厕所废水部分亚硝化反应的快速启动提供参考。  相似文献   
5.
The US EPA has exempted t-butyl acetate from VOC regulations, which increases the likelihood that it may replace other solvents in some settings. This investigation probes its chemosensory properties. In Study 1, subjects (n = 29) sought to detect the odor of t-butyl acetate and of n-butyl acetate in forced-choice testing of stable concentrations, analytically confirmed. Subjects sniffed from cones with a high enough volumetric flow to insure against dilution by nonodorized air. A subject made hundreds of judgments, enough for a psychometric function for each material. The points of 50% detection above chance (“threshold”) occurred at 8 and 2 ppb for t-butyl acetate and n-butyl acetate, respectively. In study 2, subjects (n = 26) sought to detect vapor with the eye via chemesthesis (sensory irritation) in 10-s exposures. Detection at 50% occurred at 177 and 113 ppm for t-butyl acetate and n-butyl acetate, respectively, more than 10,000 times above that for odor detection. The protocols produced results of uncommon precision compared to those in often-misleading archival databases. The nose exhibits much higher sensitivity than the databases indicate. The collections rarely exhibit accuracy better than ±1000%. Collection of accurate data for a VOC can ironically bring on stricter regulation for just it, a situation that calls for a strategy to improve the database by collection of new data, importation of better data, and development of quantitative structure–activity modeling.  相似文献   
6.
Weber R 《Chemosphere》2007,67(9):S109-S117
One important criterion for assessment of a POPs destruction technology is the potential formation of new POPs and other toxic by-products, in particular whether the highly toxic PCDDs/PCDFs are formed and under which operation conditions their formation is relevant. For incineration processes the formation mechanisms of PCDDs/PCDFs have been investigated thoroughly and strategies and technologies were developed to minimize their formation and emission. A detailed assessment of non-combustion technologies with respect to PCDD/PCDF formation is, however, lacking to date. A comparison of reaction conditions for PCDD/PCDF formation from precursor formation studies and actual applied conditions of a broad range of POPs destruction technologies in the present paper indicates that the operation conditions for a number of destruction technologies have the potential to generate high concentrations of PCDDs/PCDFs if dioxin precursors are present and that also PCDD/PCDF de novo formation can take place. Therefore a strategy and regulations for a more profound assessment and monitoring of the fate of PCDD/PCDF formation and emission is essential for the evaluation of POP destruction technologies and for a sound risk management of POPs. The present paper aims to provide a critical impulse in this respect, discusses the relevant formation pathways with respect to POPs destruction technologies and proposes a basic framework on how evaluations may be performed.  相似文献   
7.
Application of microbial hot spots enhances pesticide degradation in soils   总被引:1,自引:0,他引:1  
Through transfer of an active, isoproturon degrading microbial community, pesticide mineralization could be successfully enhanced in various soils under laboratory and outdoor conditions. The microbes, extracted from a soil having high native ability to mineralize this chemical, were established on expanded clay particles and distributed to various soils in the form of microbial "hot spots". Both, diffusion controlled isoproturon mass flow towards these "hot spots" (6microg d(-1)) as well as microbial ability to mineralize the herbicide (approximately 5microg d(-1)) were identified as the main processes enabling a multiple augmentation of the native isoproturon mineralization even in soils with heavy metal contamination. Soil pH-value appears to exert an important effect on the sustainability of this process.  相似文献   
8.
This report gives a summary of the historic use, former management and current release of polychlorinated biphenyls (PCBs) in Germany and assesses the impact of the life cycle of PCBs on the contamination of the environment and of food products of animal origin. In Germany 60,000 t of PCBs were used in transformers, capacitors or as hydraulic oils. The use of PCB oils in these “closed applications”, has been banned in Germany in 2000. Thirty to 50% of these PCBs were not appropriately managed. In West Germany, 24,000 t of PCBs were used in open applications, mainly as additive (plasticiser, flame retardant) in sealants and paints in buildings and other construction. The continued use in open applications has not been banned, and in 2013, an estimated more than 12,000 t of PCBs were still present in buildings and other constructions. These open PCB applications continuously emit PCBs into the environment with an estimated release of 7–12 t per year. This amount is in agreement with deposition measurements (estimated to 18 t) and emission estimates for Switzerland. The atmospheric PCB releases still have an relevant impact on vegetation and livestock feed. In addition, PCBs in open applications on farms are still a sources of contamination for farmed animals. Furthermore, the historic production, use, recycling and disposal of PCBs have contaminated soils along the lifecycle. This legacy of contaminated soils and contaminated feed, individually or collectively, can lead to exceedance of maximum levels in food products from animals. In beef and chicken, soil levels of 5 ng PCB-TEQ/kg and for chicken with high soil exposure even 2 ng PCB-TEQ/kg can lead to exceedance of EU limits in meat and eggs. Areas at and around industries having produced or used or managed PCBs, or facilities and areas where PCBs were disposed need to be assessed in respect to potential contamination of food-producing animals. For a large share of impacted land, management measures applicable on farm level might be sufficient to continue with food production. Open PCB applications need to be inventoried and better managed. Other persistent and toxic chemicals used as alternatives to PCBs, e.g. short chain chlorinated paraffins (SCCPs), should be assessed in the life cycle for exposure of food-producing animals and humans.  相似文献   
9.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   
10.

Background and aims  

Hexabromocyclododecane (HBCD) is a brominated flame retardant used mainly in polystyrene foam as well as in textile applications. In recent years, measures were taken to reduce HBCD emissions during its production and use. To evaluate the efficacy of these measures, a monitoring project was initiated with fish as bioaccumulation indicators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号