首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
环保管理   2篇
基础理论   1篇
  2015年   2篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.  相似文献   
2.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   
3.
The two‐stage ditch is a novel management practice originally implemented to increase bank stability through floodplain restoration in channelized agricultural streams. To determine the effects of two‐stage construction on sediment and nutrient loads, we monitored turbidity, and also measured total suspended solids (TSS), dissolved inorganic nitrogen (N) species, and phosphorus (P) after two‐stage ditch construction in reference and manipulated reaches of four streams. Turbidity decreased during floodplain inundation at all sites, but TSS and P, soluble reactive phosphorus (SRP) and total phosphorus (TP) decreased only in the two‐stage ditches with longer duration of inundation. Both TSS and TP were positively correlated within individual streams, but neither were correlated with turbidity. Phosphorus was elevated in the stream to which manure was applied adjacent to the two‐stage reach, but not the reference reach, suggesting that landscape nutrient management plans could restrict nutrient transport to the stream, ultimately determining the efficacy of instream management practices. In addition, ammonium and nitrate decreased in two‐stage reaches with lower initial N concentrations. Overall, results suggest that turbidity, TSS, and TP were reduced during floodplain inundation, but the two‐stage alone may not be effective for managing high inorganic N loads.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号