首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   1篇
基础理论   1篇
污染及防治   3篇
评价与监测   4篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2000年   4篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
A measuring campaign was conducted in the street canyon 'Runeberg street' in Helsinki in 1997. Hourly concentrations of carbon monoxide (CO), nitrogen oxides (NOX), nitrogen dioxide (NO2) and ozone (O3) were measured at the street and roof levels, and the relevant hourly meteorological parameters were measured at the roof level. The hourly street level measurements and on-site electronic traffic counts were conducted during the whole year 1997, and roof level measurements were conducted during approximately two months, from 3 March to 30 April in 1997. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx, but the model slightly overestimated the measured concentrations of NO2. The database, which contains all measured and predicted data, is available for a further testing of other street canyon dispersion models.  相似文献   
2.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   
3.
Numerical dispersion models developed and validated in different European countries were applied to data sets from wind tunnel and field measurements. The comparison includes the Danish Operational Street Pollution Model (OSPM) and the microscale flow and dispersion model MISKAM. The latter is recommended for application in built-up areas in the draft of the new German guideline VDI 3782/8. In a first step the models were applied to simplified street configurations. Different parameters as length and height of adjacent buildings and the angle of the incoming flow were varied. The results were compared to recent wind tunnel measurements. In a second step the models were applied to two extensively investigated field data sets from Jagtvej, Copenhagen and G ttinger Straße, Hannover. Intensified and more transparent and accessible validation procedures would be helpful for the thorough user.  相似文献   
4.
This study presents a comparison between measured and modelled particle number concentrations (PNCs) in the 10–300 nm size range at different heights in a canyon. The PNCs were modelled using a simple modelling approach (modified Box model, including vertical variation), an Operational Street Pollution Model (OSPM) and Computational Fluid Dynamics (CFD) code FLUENT. All models disregarded any particle dynamics. CFD simulations have been carried out in a simplified geometry of the selected street canyon. Four different sizes of emission sources have been used in the CFD simulations to assess the effect of source size on mean PNC distributions in the street canyon. The measured PNCs were between a factor of two and three of those from the three models, suggesting that if the model inputs are chosen carefully, even a simplified approach can predict the PNCs as well as more complex models. CFD simulations showed that selection of the source size was critical to determine PNC distributions. A source size scaling the vehicle dimensions was found to better represent the measured PNC profiles in the lowest part of the canyon. The OSPM and Box model produced similar shapes of PNC profile across the entire height of the canyon, showing a well-mixed region up to first ≈2 m and then decreasing PNCs with increased height. The CFD profiles do correctly reproduce the increase from road level to a height of ≈2 m; however, they do not predict the measured PNC decrease higher in the canyon. The PNC differences were largest between idealised (CFD and Box) and operational (OSPM) models at upper sampling heights; these were attributed to weaker exchange of air between street and roof-above in the upper part of the canyon in the CFD calculations. Possible reasons for these discrepancies are given.  相似文献   
5.
ABSTRACT

It is important to develop a general model to accurately simulate the air pollution in urban street areas. In this paper, the Operational Street Pollution Model (OSPM) initially developed in Denmark is tested with measured data from a relatively wide and open street in Beijing. Major factors influencing the dispersion, such as emission factors, stationary source emissions, and solar radiation, are analyzed. Results show that the model can reflect the basic dispersion pattern in the street but gives systematically higher concentrations. After modifications to estimate street-level wind speed in the model, performance is obviously improved.  相似文献   
6.
Since October 1998 two DOAS instruments were installed at the level of the first floor and at the top of a building located in St. Petersburg at Pestelya Street. The collected datacovers the time period of December 1998–March 2001, and include concentrations of benzene, toluene, NO and NO2, ozone and SO2. There is also an additional information about the traffic intensity and meteorological conditions. The results of the analysis of this data set, using the OSPM model, are presented here with the goal to understand the features of the air pollution dispersion in this street canyon and to analyse the information about the emission factors of the vehicles. In particular, the model results are used for the solution of the inverse problem of reconstructing the emission factors from measured concentrations. The results obtained indicate that most of the concentrations are well inside the Russian standards with the only exception of NO2 (mean and 98-th percentile are equal to 57.8 and 119.2 g m-3 for the street level). The same values for benzene are 18.5 and 62.6, respectively. Emission estimates show that there is a possibility that the NOx and benzene basic emission factors recommended by the Russian national guidelines could result in overestimating the traffic emissions. These considerations are supplemented with the model sensitivity tests carried out in connection with the problem of predictability of NO2 concentrations in the street canyon. Tests indicate that NO2 concentrations are not very sensitive to NOx emissions because of the usually low urban background ozone levels.  相似文献   
7.
OSPM - A Parameterised Street Pollution Model   总被引:3,自引:0,他引:3  
For many practical applications, as e.g. in support of air pollution management, numerical models based on solution of the basic flow and dispersion equations are still too complex. Alternative are models that are basically parameterised semi-empirical models making use of a priori assumptions about the flow and dispersion conditions. However, these models must, be thoroughly tested and their performance and limitations carefully documented. The Danish Operational Street Pollution Model (OSPM) belongs to this category of parameterised models. In the OSPM, concentrations of exhaust gases are calculated using a combination of a plume model for the direct contribution and a box model for the recirculating part of the pollutants in the street. Parameterisation of flow and dispersion conditions in street canyons was deduced from extensive analysis of experimental data and model tests. Results of these tests were used to further improve the model performance, especially with regard to different street configurations and a variety of meteorological conditions.  相似文献   
8.
A Simple Model for Urban Background Pollution   总被引:1,自引:0,他引:1  
A simple urban background pollution model is presented. Contributions from the individual area sources, subdivided into a grid net of a resolution of 2km × 2km, are integrated along the wind direction path assuming linear dispersion with the distance to the receptor point. Horizontal dispersion is accounted for by averaging the calculated concentrations over a certain, wind speed dependent wind direction sector, centred on the average wind direction. Formation of the nitrogen dioxide due to oxidation of nitrogen monoxide by ozone is calculated using a simple chemical model based on assumption of a photochemical equilibrium on the time scale of the pollution transport across the city area. The rate of entrainment of fresh rural ozone is governed by this time scale. The model is suitable for calculations of urban background when the dominating source is the road traffic. For this source the emissions take place at ground level, and a good approximation is to treat the emissions as area sources, but with an initial vertical dispersion determined by the height of the buildings.  相似文献   
9.
The paper addresses the problem of the parameterisation of traffic induced turbulent motion in urban dispersion models. Results from a variety of full-scale and wind-tunnel studies are analysed and interpreted within a modelling framework based on scaling considerations. The combined effects of traffic and wind induced dispersive motions are quantified for different traffic situations (variable traffic densities, vehicle velocities and vehicle types) and incorporated into the developed parameterisations. A new dispersive velocity scale is formulated and recommendations regarding its application in urban dispersion models are given. The necessity of accounting for traffic induced air motions in predictions of street-canyon pollution levels is demonstrated. Further research is needed to verify the empirical constants in the proposed parameterisations and to generalize the developed approach for a broader range of urban building configurations, meteorological conditions, and traffic situations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号