首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Abstract:  Systematic conservation planning typically requires specification of quantitative representation targets for biodiversity surrogates such as species, vegetation types, and environmental parameters. Targets are usually specified either as the minimum total area in a conservation-area network in which a surrogate must be present or as the proportion of a surrogate's existing spatial distribution required to be in the network. Because the biological basis for setting targets is often unclear, a better understanding of how targets affect selection of conservation areas is needed. We studied how the total area of conservation-area networks depends on percentage targets ranging from 5% to 95%. We analyzed 12 data sets of different surrogate distributions from 5 regions: Korea, Mexico, Québec, Queensland, and West Virginia. To assess the effect of spatial resolution on the target-area relationship, we also analyzed each data set at 7 spatial resolutions ranging from 0.01°× 0.01° to 0.10°× 0.10°. Most of the data sets showed a linear relationship between representation targets and total area of conservation-area networks that was invariant across changes in spatial resolution. The slope of this relationship indicated how total area increased with target level, and our results suggest that greater surrogate representation requires significantly more area. One data set exhibited a highly nonlinear relationship. The results for this data set suggest a new method for setting targets on the basis of the functional form of target-area relationships. In particular, the method shows how the target-area relationship can provide a rationale for setting targets solely on the basis of distributional information about surrogates.  相似文献   
2.
Abstract:  Rapid biodiversity assessment and conservation planning require the use of easily quantified and estimated surrogates for biodiversity. Using data sets from Québec and Queensland, we applied four methods to assess the extent to which environmental surrogates can represent biodiversity components: (1) surrogacy graphs; (2) marginal representation plots; (3) Hamming distance function; and (4) Syrjala statistical test for spatial congruence. For Québec we used 719 faunal and floral species as biodiversity components, and for Queensland we used 2348 plant species. We used four climatic parameter types (annual mean temperature, minimum temperature during the coldest quarter, maximum temperature during the hottest quarter, and annual precipitation), along with slope, elevation, aspect, and soil types, as environmental surrogates. To study the effect of scale, we analyzed the data at seven spatial scales ranging from 0.01° to 0.10° longitude and latitude. At targeted representations of 10% for environmental surrogates and biodiversity components, all four methods indicated that using a full set of environmental surrogates systematically provided better results than selecting areas at random, usually ensuring that ≥90% of the biodiversity components achieved the 10% targets at scales coarser than 0.02°. The performance of surrogates improved with coarser spatial resolutions. Thus, environmental surrogate sets are useful tools for biodiversity conservation planning. A recommended protocol for the use of such surrogates consists of randomly selecting a set of areas for which distributional data are available, identifying an optimal surrogate set based on these areas, and subsequently prioritizing places for conservation based on the optimal surrogate set.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号