首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
环保管理   2篇
综合类   1篇
基础理论   19篇
污染及防治   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Boersma M  Elser JJ 《Ecology》2006,87(5):1325-1330
Nutritional imbalances are of great interest in the ecological stoichiometry literature, in which researchers have focused almost exclusively on cases where nutrients are available in low amounts relative to energy (carbon), and animal growth is impaired due to insufficient nutrient intake. Little attention has been given to situations where food elemental content is higher than the level that satisfies animal requirements. However, most animals are strongly homeostatic with respect to the elemental composition of their body; hence they must excrete the excess of elements that are not in short supply. To date, stoichiometric theory has assumed that excretion of superfluous elements does not come with a cost and, thus, that consumption of food with surplus nutrients does not impair performance. Here we challenge this assumption, based on a compilation of several examples involving food phosphorus content that show that the performance of a wide variety of animals decreases when supplied with food containing high concentrations of (potentially) limiting nutrients. We discuss possible mechanisms for this phenomenon, and suggest that animals most vulnerable to effects of high food nutrient content are those that normally feed on low- quality (low-nutrient: C) food, and have a relatively low body nutrient content themselves, such as herbivores and detritivores.  相似文献   
2.
3.
In this study we evaluate the effect of coastal re-alignment on the utilisation of coastal grasslands by staging geese. We assessed vegetation change and utilisation by geese using repeated mapping and regular dropping counts in both the restored marsh and adjacent reference sites. All measurements were started well before the actual re-alignment. In addition, we studied the effects of livestock grazing on vegetation and geese, using exclosures. The vegetation transformed from fresh grassland into salt-marsh vegetation. A relatively large proportion of the de-embanked area became covered with secondary pioneer vegetation, and the overall cover of potential food plants for geese declined. Goose utilisation had initially dropped to low levels, both in autumn and in spring, but it recovered to a level comparable to the reference marsh after ten years. Exclosure experiments revealed that livestock grazing prevented the establishment of closed swards of grass in the poorly drained lower area of the restored marsh, and thereby negatively affected goose utilisation of these areas during spring staging. Goose grazing in the restored marsh during spring showed a positive numerical response to grass cover found during the preceding growing season. (1) The value of restored salt marsh as foraging habitat for geese initially decreased after managed re-alignment but recovered after ten years. (2) Our findings support the idea that the value of foraging habitats depends largely on the cover of forage plants and that this can be manipulated by adjusting both grazing and drainage.  相似文献   
4.
Animals balance feeding and anti-predator behaviors at various temporal scales. When risk is infrequent or brief, prey can postpone feeding in the short term and temporally allocate feeding behavior to less risky periods. If risk is frequent or lengthy, however, prey must eventually resume feeding to avoid fitness consequences. Species may exhibit different behavioral strategies, depending on the fitness tradeoffs that exist in their environment or across their life histories. North Pacific flatfishes that share juvenile rearing habitat exhibit a variety of responses to predation risk, but their response to risk frequency has not been examined. We observed the feeding and anti-predator behaviors of young-of-the-year English sole (Parophrys vetulus), northern rock sole (Lepidopsetta polyxystra), and Pacific halibut (Hippoglossus stenolepis)—three species that exhibit divergent anti-predator strategies—following exposure to three levels of predation risk: no risk, infrequent (two exposures/day), and frequent (five exposures/day). The English sole responded to the frequent risk treatment with higher feeding rates than during infrequent risk, following a pattern of behavioral response that is predicted by the risk allocation hypothesis; rock sole and halibut did not follow the predicted pattern, but this may be due to the limited range of treatments. Our observations of unique anti-predator strategies, along with differences in foraging and species-specific ecologies, suggest divergent trajectories of risk allocation for the three species.  相似文献   
5.
In soils, daughter compounds may be generated from a parent compound by microbial metabolism, chemical reactions, radioactive decay, or other mechanisms. These daughter compounds are also acted upon by soil physical, chemical and biological processes. A system often referred to as a cascade or chain of compounds system results. While a great deal of attention has been given to this problem with the linear equilibrium assumption applied uniformly to all transport and reacting compounds, little attention has been given to the simultaneous transport and fate of a parent-daughter chain with a first-order rate assumed for the adsorption-desorption kinetics of each compound and with the soil partitioned into three sorption classes.A general one-dimensional cascade or chain model for the simultaneous transport of parent and daughter compounds in sorbing, homogeneous, water table aquifers is presented. The model is based on an advective-dispersive mass accounting formulation for both compounds and includes: (a) first-order rate of conversion of parent to daughter; (2) first-order rates of loss of either parent or daughter or both due to metabolism, chemical reaction and/or irreversible processes; (3) partitioning of the aquifer material into three sorption classes, namely mildly sorbing, strongly sorbing and organic matter; (4) linear first-order kinetic rules for adsorption and desorption operating on each of the sorbing soil fractions for each compound; (5) constantly emitting sources of rectangular shape of parent compound; and (6) mass accounting boundary conditions; and a tailorable initial distribution on [0, ∞). Mathematical analysis yields a coupled, linear system of equations including two transport and fate equations, initial and boundary data, and six kinetic rules, namely three each for parent and daughter compound. A numerical scheme for solving the system of equations was developed using readily available procedures since analytical solutions could not be found. Solutions for scenarios based on leaking underground sources are presented.  相似文献   
6.
7.
The impact of Hurricanes Katrina and Rita in 2005 on pollution emissions in the Gulf of Mexico region was investigated using tropospheric column amounts of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) on the NASA Aura satellite. Around New Orleans and coastal Mississippi, we estimate that Katrina caused a 35% reduction in NOx emissions on average in the three weeks after landfall. Hurricane Rita caused a significant reduction (20%) in NOx emissions associated with power generation and intensive oil refining activities near the Texas/Louisiana border. We also found a 43% decrease by these two storms over the eastern Gulf of Mexico Outer Continental Shelf mainly due to the evacuation of and damage to platforms, rigs, and ports associated with oil and natural gas production.  相似文献   
8.
Predation of calanoid copepods on their own and other copepods’ offspring   总被引:1,自引:0,他引:1  
Predation of eggs and nauplii by adult copepods is often used to explain unexpected death rates in population dynamics studies, but the phenomenon has been rarely investigated or quantified. Therefore, we studied the predatory feeding of adult females (Acartia clausi, Centropages hamatus, Centropages typicus, and Temora longicornis) on their own and other species’ eggs and young nauplii with different densities of single animal-prey, mixtures of animal-prey and in the presence of diatoms. All species preyed on eggs and nauplii of their own and all other species. Maximal egg predation varied between 7 and 64 eggs fem?1 day?1. Ingestion of Centropages spp. eggs was lowest, potentially due to the spiny egg surface. Maximal feeding rates on nauplii ranged from 5 to 45 nauplii fem?1 day?1. T. longicornis preferred eggs, when eggs and nauplii were offered together at the same densities, and the other predators selected for nauplii. At a diatom concentration of 60 μg C l?1 predation on eggs by C. typicus was higher than without algae, whereas A. clausi and T. longicornis did not change their uptake of eggs. Feeding on nauplii in the presence of diatoms was again enhanced in C. typicus, and unaffected in A. clausi and C. hamatus. T. longicornis reduced its feeding on nauplii in the presence of diatoms. Calculated predation rates, using field abundances of predators and prey, suggest that predation of copepods on their own young stages may account for ca. 30 % of total mortality of young stages in North Sea copepod populations.  相似文献   
9.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   
10.
Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large‐scale conservation zones are not always practical or politically feasible and other ecosystem‐based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. Contaminación, Pérdida de Hábitat, Pesca y Cambio Climático como Amenazas Críticas para los Pingüinos  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号