首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   5篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Smee DL  Weissburg MJ 《Ecology》2006,87(6):1587-1598
The lethal and nonlethal impacts of predators in marine systems are often mediated via reciprocal detection of waterborne chemical signals between consumers and prey. Local flow environments can enhance or impair the chemoreception ability of consumers, but the effect of hydrodynamics on detection of predation risk by prey has not been investigated. Using clams as our model organism, we investigated two specific questions: (1) Can clams decrease their mortality by responding to predators? (2) Do fluid forces affect the ability of clams to detect approaching predators? Previous research has documented a decrease in clam feeding (pumping) in response to a neighboring predator. We determined the benefits of this behavior to survivorship by placing clams in the field with knobbed whelk or blue crab predators caged nearby and compared mortality between these clams and clams near a cage-only control. Significantly more clams survived in areas containing a caged predator, suggesting that predator-induced alterations in feeding reduce clam mortality in the field. We ascertained the effect of fluid forces on clam perception of predators in a laboratory flume by comparing the feeding (pumping) behavior of clams in response to crabs and whelks in flows of 3 and 11 cm/s. Clams pumped significantly less in the presence of predators, but their reaction to blue crabs diminished in the higher velocity flow, while their response to whelks remained constant in both flows. Thus, clam reactive distance to blue crabs was affected by fluid forces, but hydrodynamic effects on clam perceptive distance was predator specific. After predators were removed, clams exposed to whelks took significantly longer to resume feeding than those exposed to blue crabs. Our results suggest that prey perception of predators can be altered by physical forces. Prey detection of predators is the underlying mechanism for trait-mediated indirect interactions (TMIIs), and recent research has documented the importance of TMIIs to community structure. Since physical forces can influence prey perception, the prevalence of TMIIs in communities may, in part, be related to the sensory ability of prey, physical forces in the environment that impact sensory performance, and the type of predator detected.  相似文献   
2.
3.
Abstract: The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.  相似文献   
4.
Biotic and abiotic conditions can separately and synergistically influence the abundance and distribution of species and create vertical zonation patterns in marine systems. In Corpus Christi Bay, TX, USA, eastern oysters (Crassostrea virginica) are limited to intertidal habitats, while in adjacent estuaries, oysters not only grow subtidally, but thrive in these areas to the extent they are a viable commercial fishery. The purpose of this study was to assess how predators and abiotic conditions affect oyster mortality and growth at different tidal elevations. Anecdotal evidence suggests that abiotic conditions, primarily hypoxia and salinity, as well as oyster disease, limits oysters to intertidal areas. Yet, in Corpus Christi Bay, oysters are absent from subtidal areas where hypoxia is not known to occur. Infection by Perkinsus marinus (Dermo) is common in the study area, but previous work suggests that infection rates do not increase when oysters are transplanted subtidally. We investigated oyster tidal distributions by transplanting newly settled oysters into intertidal and subtidal areas. Predation on oysters was significantly greater in subtidal as compared to intertidal habitats. When protected from predators using cages, oyster survival significantly increased. Further, oysters in subtidal areas allocated significantly more resources to shell growth than did those in intertidal areas, and oysters are known to grow heavier shells in response to predators. Oyster settlement was not statistically different between inter and subtidal areas, and abiotic conditions measured during the study did not exceed known tolerance limits for oysters. Previous studies have shown that abiotic conditions influence oyster mortality and the success of restored oyster reefs. Our findings indicate that predators can also affect oyster distribution, and their effects should be evaluated when developing plans for oyster management and restoration.  相似文献   
5.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号