首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
评价与监测   1篇
社会与环境   1篇
  2012年   1篇
  2008年   1篇
  1980年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
The scope of PAH contamination of raw, finished, and distributed waters is reviewed. The concentrations of PAHs in drinking water sources range from nanogram to microgram-per-liter quantities. Conventional treatment (flocculation, sedimentation, chlorination, and filtration) appears to substantially reduce total PAH concentrations present at higher concentrations in source waters. A major factor in this reduction is the removal of PAHs adsorbed onto particulate matter. The role of chlorination is not clear and reactions of PAHs with chlorine may in fact produce products which themselves are deleterious. Activated carbon can further assist in PAH removal. However, it may be inappropriate for treatment of PAHs present at low concentrations. Water entering the distribution system can become recontaminated via contact with reservoirs and pipes coated with coal-tar or asphalt based products.  相似文献   
2.
In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more idiosyncratically, with different parameters responding to different treatments. These results show that partial submergence and soil flooding are two very different stressors to which species respond in different ways, and that their effects on physiology, survival, and growth are interactive. Understanding species zonation with water regimes can be improved by a better appreciation of how these factors affect plant metabolism independently and interactively.  相似文献   
3.
Lead in paint continues to be a threat to children's health in cities across the United States, which means there is an ongoing need for testing and analysis of paint. This ongoing analytical effort and especially development of new methods continue to drive the need for diagnostic testing materials that provide the analytical challenges of real-world paints. To this end, 31 different types of paint test materials were developed and prepared. Preparation of the materials included development of lead-containing paint films yielding an overall relative standard error for one individual test sample being less than 10%. The 31 diagnostic test materials prepared with these paint films included two lead pigments; lead concentrations from nominally 0 to 2.0 mg lead/cm(2) (0 to 5% lead by weight); overlayers of both "lead-free," oil-based and water-based paints; Al, Ba, and Mg as potential chemical interferents; red and black potential color interferents; and substrates of wood, metal, masonry, and plaster. These materials challenge each step in method development and evaluation, including paint sample collection and preparation, lead extraction, and measurement of solubilized lead. When the materials were used to test performance of a new lead-in-paint testing method based on extraction using a rotor/stator method and measurement using turbidimetry, the results agreed to within ±20% of the expected lead values for 30 out of 31 of the diagnostic test materials, thereby demonstrating their levels of quality and utility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号