首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   2篇
环保管理   1篇
基础理论   1篇
污染及防治   3篇
  2023年   1篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Biochemical methane potential (BMP) assays, typically used to assess anaerobic biodegradability of liquid wastes with added nutrients and bacteria, were adapted to compare hydrolysis of lignocellulosic material under sulfidogenic and methanogenic environments. A method based on selective inhibition of microorganism activity, by 3% toluene, was used to measure the hydrolysis rate of lignocellulosic material and the accumulation of sugar. The neutral sugars, galactose, glucose, and xylose, which were released from lignocellulosic material such as office paper and newspaper in the presence 3% toluene, clearly accumulated over time under sulfidogenic conditions. The accumulation rates of sugars, glucose, and xylose, were higher in the sulfidogenic condition than in the methanogenic condition, indicating a faster degradation of lignocellulosic materials under the sulfidogenic condition.  相似文献   
2.
Cho HH  Lee T  Hwang SJ  Park JW 《Chemosphere》2005,58(1):103-108
Hybrid barriers using dechlorination and immobilization were studied to remove trichloroethylene (TCE) in this study. Hybrid barriers of iron filings and organo (hexadecyltrimethylammonium, HDTMA)-bentonite were simulated in columns to assess the performance of the hybrid barriers. TCE reduction rate for the mixture of zero valent iron (ZVI) and HDTMA-bentonite was approximately seven times higher than that for ZVI, suggesting the reduction of TCE was accelerated when HDTMA-bentonite was mixed with ZVI. For the column of two separate layers of iron and HDTMA-bentonite, TCE reduction rate was nearly similar to that for ZVI alone, but the partition coefficient (Kd) was 4.5 times higher than that for ZVI only. TCE was immobilized in the first layer with HDTMA-bentonite due to sorption, and then dechlorinated in the second layer with iron filings due to reduction. The HDTMA-bentonite and minimally-desorbed HDTMA from the organo-bentonite are believed to contribute the increase in TCE concentration on iron surface so that more TCE could be available for reduction. Therefore, the incorporation of HDTMA-bentonite into ZVI not only can effectively retard the transport of chlorinated organic contaminants from landfill leachate or oil shock in subsurface environment, also can expedite the reduction rate of TCE.  相似文献   
3.
Environmental Chemistry Letters - Pollution of waste and natural waters by antibiotics is a major health issue that induces the development of resistant pathogens. Pollutant may be removed by...  相似文献   
4.
5.
Reactive barriers are used for in situ treatment of contaminated ground water. Waste green sand, a by-product of gray-iron foundries that contains iron particles and organic carbon, was evaluated in this study as a low-cost reactive material for treating ground water contaminated with the herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] and metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide]. Batch and column tests were conducted with 11 green sands to determine transport parameters and reaction rate constants for the herbicides. Similar Fe-normalized rate constants (K(SA)) were obtained from the batch and column tests. The K(SA) values obtained for green sand iron were also found to be comparable with or slightly higher than K(SA) values for Peerless iron, a common reactive medium used in reactive barriers. Partition coefficients ranging between 3.6 and 50.2 L/kg were obtained for alachlor and between 1.0 and 54.8 L/kg for metolachlor, indicating that the organic carbon and clay in green sands can significantly retard the movement of the herbicides. Partition coefficients obtained from the batch and column tests were similar (+/-25%), but the batch tests typically yielded higher partition coefficients for green sands exhibiting greater sorption. Calculations made using transport parameters from the column tests indicate that a 1-m-thick reactive barrier will result in a 10-fold reduction in concentration of alachlor and metolachlor for seepage velocities less than 0.1 m/d provided the green sand contains at least 2% iron. This level of reduction generally is sufficient to reduce alachlor and metolachlor concentrations below maximum contaminant levels in the United States.  相似文献   
6.
Lee T  Park JW  Lee JH 《Chemosphere》2004,56(6):571-581
Waste green sands are industrial byproducts of the gray iron foundry industry. These green sands are composed of fine silica sand, clay binder, organic carbon, and residual iron particles. Because of their potential sorptive and reactive properties, tests were performed to determine the feasibility of using green sands as a low cost reactive medium in permeable reactive barriers (PRBs). Serial batch kinetic tests and conventional batch sorption tests were conducted to determine the removal characteristics for zinc in aqueous solutions. Removal characteristics for zinc in the presence of green sands are comparable to those of Peerless iron, a common reactive medium used in PRBs. High removal capacities for zinc of green sands are attributed to clay, organic carbon, and residual iron particles, which are known sorptive media for heavy metals. Furthermore, high pH values in the presence of clay and residual iron particles enhanced sorption and precipitation of zinc.  相似文献   
7.
Use of waste iron metal for removal of Cr(VI) from water   总被引:6,自引:0,他引:6  
Lee T  Lim H  Lee Y  Park JW 《Chemosphere》2003,53(5):479-485
Cr(VI) removal from water was evaluated using waste iron particles in batch experimental mode. The reaction rates were inversely proportional to the initial Cr(VI) concentrations, and the reaction rates of Cr(VI) removal with the waste iron metal were faster than those with Peerless iron, a commercial zero-valent iron. The loss in iron reactivity due to the oxidation, from Fe(0) to Fe(II), ultimately to Fe(III), could be recovered by adding iron-reducing consortium (IRC) to the oxidized iron. Bacterial reduction of Cr(VI) also helped to decrease the aqueous concentration of Cr(VI), but the reduction of oxidized iron by IRC and the consequent reduction of Cr(VI) to Cr(III) by the reduced iron was more significant. Thus, reusing waste iron metal for Cr(VI) removal can reduce the cost of reactive media. Furthermore, the addition of IRC to the waste iron metal can accelerate the removal rate of Cr(VI), and can recover the reactivity of irons which were oxidized by Cr(VI).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号