首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   2篇
综合类   1篇
基础理论   4篇
污染及防治   1篇
社会与环境   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2014年   2篇
  2011年   1篇
  2008年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Multiple-species reserves aim at supporting viable populations of selected species. Population viability analysis (PVA) is a group of methods for predicting such measures as extinction risk based on species-specific data. These methods include models that simulate the dynamics of a population or a metapopulation. A PVA model for the California gnatcatcher in Orange County was developed with landscape (GIS) data on the habitat characteristics and requirements and demographic data on population dynamics of the species. The potential applications of this model include sensitivity analysis that provides guidance for planning fieldwork, designing reserves, evaluating management options, and assessing human impact. The method can be extended to multiple species by combining habitat suitability maps for selected species with weights based on the threat faced by each species, and the contribution of habitat patches to the persistence of each species. These applications and extensions, together with the ability of the model to combine habitat and demographic data, make PVA a powerful tool for the design, conservation, and management of multiple species reserves.  相似文献   
2.
Environment, Development and Sustainability - The study utilized the tree covers per cent, agroforestry suitability, present and future (2050) climate, agriculture vulnerability (2050), percentage...  相似文献   
3.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   
4.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   
5.
Environmental Science and Pollution Research - In Saudi Arabia, identifying homogenous zones based on rainfall patterns is critical for ensuring a predictable and stable water resource and...  相似文献   
6.
7.
The physico-chemical characteristics of paper mill industry effluent were measured and some were found to be above the permissible limits prescribed by Indian irrigation water standard. A study was conducted in pots to investigate the effects of different concentrations (10, 20, 30, 40, 50, 60, 70, 80 and 100%) of paper mill effluent on growth and production of rice, mustard and peafor three years. The study reveals that the paper mill effluent has deleterious effect on the growth of crop at higher concentrations. However, at lower concentration (viz. 10 to 40% in rice, 10 to 50% in mustard and 10 to 60% in pea) of effluent, beneficial impact on general welfare of the crops was noticed. Growth and development was increased with increasing the concentration of the effluent up to 30% in rice, 40% in mustard and 50% in pea. Investigation showed that the growth and production of rice, mustard and pea was found maximum at a concentration of 30, 40 and 50% effluent respectively.  相似文献   
8.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   
9.
Rising population and demands for rice as a staple food have created severe stress on freshwater availability for paddy cultivation. The literature suggests that conventional irrigation techniques are inadequate to overcome the water constraints arising from drought and extreme weather conditions. In the past few decades, there is an upsurge of scientific exploration of agricultural techniques in reinventing traditional methods of irrigation. Recently, alternate wet and dry irrigation (AWDI) method has shown great promise regarding profitable rice cultivation with limited water supply. The AWDI method is a trending water management system, which inundates rice fields with intermittent wet conditions followed by a dry period. This not only ensures adequate water supply but increases crop yield and water productivity index (WPI). The AWDI also helps in reducing parasitic mosquito population in the rice fields by minimizing the field flooding period and curtailing a major part of their life cycles. This review proposes a novel approach of emphasizing AWDI method as an important agricultural tool for supplementing rice fields with limited freshwater, increasing crop yield, and monitoring parasitic mosquito populations. The major objective of this study is to report the state-of-the-art scenario of AWDI method, critically analyze the research gaps related to conventional methods of irrigation and appreciate the futuristic long-term benefits of AWDI method. Literature survey was performed using search engines like Scopus, PubMed, Google Scholar, Research Gate, Science Direct, and Google Scholar. Comprehensive appraisal of resources (both offline and online) and critical evaluation of AWDI technicalities revealed that the AWDI reduced water usage by 45%, enhanced crop yield and improved WPI in paddy fields in the Asian sub-continent. The AWDI also curtailed the propagation of lethal mosquito species (Cx. tritaenorhynchus, Cx. vishnui, and Cx pseudovishnui) in rice fields. Therefore, the current study endorses AWDI as a promising substitute of conventional irrigation and a novel approach towards fulfilling water constraints that may be practiced anywhere in the world.  相似文献   
10.
Environment, Development and Sustainability - According to the World Urbanization Prospects of United Nations, the global urban population has increased rapidly over past few decades, reaching...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号