首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
环保管理   9篇
综合类   17篇
基础理论   8篇
污染及防治   20篇
评价与监测   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1998年   1篇
  1970年   1篇
  1959年   1篇
  1956年   1篇
  1954年   1篇
  1951年   1篇
  1936年   1篇
  1930年   1篇
  1918年   1篇
  1917年   1篇
  1916年   2篇
  1915年   3篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.  相似文献   
2.
Bankside groundwater is widely used as drinking water resource and, therefore, contamination has to be avoided. In the European Union groundwater protection is explicit subject to Water Framework Directive. While groundwater pollution may originate from different sources, this study investigated on impacts via flood events.Groundwater was sampled with increasing distance to the river Rhine near Karlsruhe, Germany. Samples were HPLC-MS-MS analyzed for the river contaminant carbamazepine to indicate river water infiltration, giving permanent presence in 250 m distance to the river (14-47 μg L−1). Following a flood event, concentrations of about 16-20 μg L−1 could also be detected in a distance of 750 m to the river. Furthermore, estrogenic activity as determined with the Yeast Estrogen Screen assay was determined to increase up to a 17β-ethinylestradiol equivalent concentration (E-EQ) = 2.9 ng L−1 near the river, while activity was initially measured following the flood with up to E-EQ = 2.6 ng L−1 in 750 m distance. Detections were delayed with increasing distance to the river indicating river water expansion into the aquifer.Flood suspended matter and floodplain soil were fractionated and analyzed for estrogenic activity in parallel giving up to 1.4 ng g−1 and up to 0.7 ng g−1, respectively. Target analysis focusing on known estrogenic active substances only explained <1% of measured activities.Nevertheless, river water infiltration was shown deep into bankside groundwater, thus, impacting groundwater quality. Therefore, flood events have to be in the focus when aiming for groundwater and drinking water protection as well as for implementation of Water Framework Directive.  相似文献   
3.
Arsenic mobility may increase in liquid phase due to association with colloidal Fe oxides. We studied the association of As with Fe oxide colloids in the effluent from water-saturated soil columns run under anoxic conditions. Upon exfiltration, the solutions, which contained Fe2+, were re-aerated and ferrihydrite colloids precipitated. The entire amount of effluent As was associated with the ferrihydrite colloids, although PO43−, SiO44−, CO32− and dissolved organic matter were present in the effluent during ferrihydrite colloid formation. Furthermore, no subsequent release of As from the ferrihydrite colloids was observed despite the presence of these (in)organic species known to compete with As for adsorption on Fe oxides. Arsenic was bound via inner-sphere complexation on the ferrihydrite surface. FTIR spectroscopy also revealed adsorption of PO43− and polymerized silica. However, these species could not impede the quantitative association of As with colloidal ferrihydrite in the soil effluents.  相似文献   
4.
Sulfide-bearing mine tailings are a serious environmental problem around the world. In this study, the vertical distribution and speciation of Zn and Pb in the fine-grained flotation residues of a former sulfide ore mine in Germany were investigated to assess the inorganic weathering processes that effect the environmental risk arising from this site. Total metal contents were determined by X-ray fluorescence spectroscopy (XRF). Mobilizable fractions of Zn, Pb, Fe, and Mn were quantified by sequential chemical extractions (SCE). Furthermore, the speciation of Zn was analyzed by Zn K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) to identify the residual Zn species. The variations in pH and inorganic C content show an acidification of the topsoil to pH 5.5. EXAFS results confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared with the parent material with 10 g kg-1 Zn and neutral pH has been observed. If acidification proceeds it will lead to a significant release of Zn, S, and Pb to the ground water. In contrast to Zn, Pb is enriched in the mobile fraction of the topsoil by more than a factor of two compared with the subsoil which contains a total of 2 g kg-1 Pb. Thus, the high bioavailability of Pb and the potential for Pb uptake by plants and animals currently represent the most severe threat for environmental health.  相似文献   
5.

Goal and Scope

Blast-furnace sludge is a waste originating from pig-iron production and contains contaminants such as lead, zinc, fluoride and cyanide assumably contaminating the groundwater by leaching.

Methods

We investigated the chemical composition of 27 samples of landfilled blast-furnace sludge in pore waters which were obtained by the centrifugation of fresh material and elution with water according to DIN 38414 part 4 (S 4).

Results

The pore waters as well as the eluates were neutral to alkaline (pH 7.3 to 10.7) and were dominated by alkali and alkaline-earth metals as well as sulphate and nitrate. The concentrations of all elements and compounds investigated were mostly clearly larger in the pore waters than in the eluates. The average concentrations of environmentally relevant constituents such as lead (0,18 mg?1), zinc (1,5 mg l?1), fluoride (10,6 mg l?1), and total cyanide (1.8 mg l?1) in the pore waters were distinctly larger than the inspection value of the German Federal soil Protection Ordinance for the pathway soil-groundwater. Lead, zinc, and total cyanide concentrations in the pore waters were largely underestimated by the eluates, as these concentrations were 70 to 90% lower in the eluates compared to the pore waters.

Conclusion

In the case of landfilled blast-furnace sludge, eluates according to DIN 38414 part 4 (S 4) provide low concentrations which are unrealistic to forecast concentrations in the seepage water.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号