首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   2篇
污染及防治   1篇
评价与监测   1篇
  2019年   3篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Environmental Geochemistry and Health - Extreme flooding in May, 2014 affected the sub-catchments of six major rivers in Serbia. The goal of the study was to evaluate the contents of potentially...  相似文献   
2.

The mobility (fractionation) of rare earth elements (REEs) and their possible impacts on ecosystems are still relatively unknown. Soil samples were collected from two sites in central Serbia, an unpolluted mountain region (site 1) and a forest near a city (site 2). In order to investigate REE fractions (acid-soluble/exchangeable, reducible, oxidizable, and residual) in soils, BCR sequential extraction was performed. Additionally, the content of REEs was also determined in stipes and caps of the mushroom Macrolepiota procera, growing in the observed sites. Sc, Y, and lanthanide contents were determined by inductively coupled plasma mass spectrometry (ICP-MS), and results were subjected to multivariate data analysis. Application of pattern recognition technique revealed the existence of two distinguished clusters belonging to different geographical sites and determined by greater levels of Sc, Y, and lanthanides in Go? soil compared to Trstenik soil. Additionally, PCA analysis showed that REEs in soil were concentrated in two groups: the first consisted of elements belonging to light REEs and the second contained heavy REEs. These results suggest that the distribution of REEs in soils could indicate the geographical origin and type of soil. The bioconcentration factors and translocation factors for each REE were also calculated. This study provides baseline data on the rare earth element levels in the wild edible mushroom M. procera, growing in Serbia. In terms of bioconcentration and bioexclusion concept, Sc, Y, and REEs were bioexcluded in M. procera for both studied sites.

  相似文献   
3.
In this paper, various spatial modelling techniques were applied to analyse changes in soil cover and their impact on soil erosion in the Oplenac wine-producing area in Serbia in the past (1985 and 2013) and in the future (with predictions for 2041). The Integrated Valuation of Ecosystem Services and Trade-offs Sediment Delivery Ratio (InVEST SDR) model and the Modules for Land Use Change Evaluation (MOLUSCE) model, integrated with methods of remote sensing, were successfully applied and were shown to be valid tools for predicting the impact of Land Use Land Cover (LULC) changes when estimating soil loss. The results revealed that the greatest impact of land use changes between 1985 and 2013 was on a reduction in areas under vineyards and an extension of meadow and pasturelands as an individual and social response to economic conditions during the research period. The forecast for 2041 reflected the trends observed in the previous period, with the greatest changes witnessing an increase in urban areas and a decrease in areas of arable land. It was also found that the effect of LULC changes on spatio-temporal patterns in the Oplenac wine-producing area did not have a major impact on soil loss, meaning this area, with its good agro-climatic characteristics, is suitable for the intensification of agricultural production.  相似文献   
4.

Alluvial soils of valleys of the Danube and Mlave rivers represent priority development areas with favorable conditions for life, agriculture and tourism in eastern Serbia. Operation of the thermal power plant Kostolac results in the emission of potentially toxic pollutants into the air, water and land. The goals were to determine the soil pollution with inorganic pollutants using different pollution indices, to identify of the sources of pollutants by means of principal component analysis and the loading of each factor for individual element assessed by multi-linear regression analyses. Chemical characteristics of the studied area resulted in division of the area into four impact zones upon the distance from main pollutants (power plant blocks and ash disposal dumps). There was no established soil pollution with potentially toxic elements in bulk of the agricultural territory. Two principal components (PC1 and PC2) explained about 73% of variance. Three studied elements (As, Cu and Pb) showed anthropogenic origin of their most concentrations in soil, while other elements (Cd, Co, Cr, Ni and Zn) were of a natural (geological) origin. Single pollution index showed moderate pollution level by Ni. Integrated Nemerow pollution index showed low to no pollution levels, indicating slight ecological risk. There were no established limitations for agricultural production in the studied area, except for the only spot polluted by As due to the great flooding event in the studied year.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号