首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6142篇
  免费   112篇
  国内免费   1180篇
安全科学   232篇
废物处理   356篇
环保管理   555篇
综合类   2163篇
基础理论   1643篇
污染及防治   1773篇
评价与监测   295篇
社会与环境   278篇
灾害及防治   139篇
  2024年   4篇
  2023年   52篇
  2022年   172篇
  2021年   135篇
  2020年   106篇
  2019年   90篇
  2018年   234篇
  2017年   271篇
  2016年   337篇
  2015年   221篇
  2014年   321篇
  2013年   352篇
  2012年   697篇
  2011年   512篇
  2010年   261篇
  2009年   249篇
  2008年   330篇
  2007年   266篇
  2006年   244篇
  2005年   516篇
  2004年   601篇
  2003年   499篇
  2002年   128篇
  2001年   123篇
  2000年   94篇
  1999年   100篇
  1998年   89篇
  1997年   80篇
  1996年   66篇
  1995年   67篇
  1994年   32篇
  1993年   38篇
  1992年   34篇
  1991年   23篇
  1990年   17篇
  1989年   19篇
  1988年   9篇
  1987年   11篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1957年   1篇
排序方式: 共有7434条查询结果,搜索用时 109 毫秒
1.
2.
人口增多,耕地减少,部分地区供水不足,是我国人口与资源矛盾的基本格局。由于人口的压力,对资源实行超强度的利用,使较大范围的地区生态环境恶化,严重威胁农业生产,并成为许多地区多灾、低产、贫困的根本原因,较低的食物人均占有水平,将继续成为中国国民经济发展和人民生活水平提高的严重限制因素。增加食物,必须挖掘资源的潜力,开源与节流相结合,以内涵挖潜为主。首先是要立足现有的耕地,致力于提高单产;同时,合理开发水域、山地、草地等资源,广辟食物来源,提高非耕地资源的生产力,提高林牧渔业的发展水平。耕地应以深度开发为主,走资源节约型(节地、节水、节时、节能)的集约化道路。  相似文献   
3.
4.
Pyrite ash is created as waste from the roasting of pyrite ores during the production of sulphuric acid. These processes generate great amounts of pyrite ash waste that is generally land filled. This creates serious environmental pollution due to the release of acids and toxic substances. Pyrite ash waste can be utilized in the iron production industry as a blast furnace feed to process this waste and prevent environmental pollution. The essential parameters affecting the pelletization process of pyrite ash were studied using bentonite as a binder. Experiments were then carried out using bentonite and a mixture of bentonite with calcium hydroxide and calcium chloride in order to make the bentonite more effective. The metallurgical properties of pyrite ash, bentonite, calcium hydroxide, calcium chloride, a mixture of these and sintered pellets were studied using X-ray analysis. The crushing strength tests were carried out to investigate the strength of pyrite ash waste pellets. The results of these analyses showed that pyrite ash can be agglomerated to pellets and used in the iron production industry as a blast furnace feed. The crushing strength of the pellets containing calcium hydroxide and calcium chloride in addition to bentonite was better than the strength of pellets prepared using only bentonite binder.  相似文献   
5.
1 DEVELOPMENT OF SCIENCE PARKSThe concept of science park originated in the US. Manyterms are used to describe science parks, such as researchpark, technology park, science centre, research centre,innovation centre, and with various combination of these(MacDonald, 1987). The first science park in the worldis Stanford Industrial Park established in 1951. In 1955,only seven companies were located in the park. By 1980there were ninety companies including Hewlett PackardCompany, whic…  相似文献   
6.
Environment, Development and Sustainability - Heavy metal pollution has attracted more attention due to the toxicity and migration characteristics, which has close relationship with soil...  相似文献   
7.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
8.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   
9.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.  相似文献   
10.
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl? and PO43? of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min?1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO? and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the “ecological structure activity relationships” program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号