排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
2.
介绍中原油田石化总厂污水处理站的工艺流程、处理特点。处理后外排水中的石油类、氨氮、悬浮物等指标均满足工业回用水要求。讨论了实际运行中“AB”法的运行特点,以及处理水回用于循环水补充水的具体实施。 相似文献
3.
Yu Ren Aijun Ding Tao Wang Xinhua Shen Jia Guo Jiamin Zhang Yan Wang Pengju Xu Xinfeng Wang Jian Gao Jeffrey L. Collett 《Atmospheric environment (Oxford, England : 1994)》2009,43(9):1702-1711
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy. 相似文献
4.
5.
Xu P Wang W Yang L Zhang Q Gao R Wang X Nie W Gao X 《Environmental monitoring and assessment》2011,179(1-4):443-456
Aerosol size distributions, trace gas, and PM(2.5) concentrations have been measured in urban Jinan, China, over 6 months in 2007 and 2008, covering spring, summer, fall, and winter time periods. Number concentrations of particles (10-2,500 nm) were 16,200, 13,900, 11,200, and 21,600 cm(?-3) in spring, summer, fall, and winter, respectively. Compared with other urban studies, Jinan has higher number concentrations of accumulation-mode particles (100-500 nm) and particles (10-2,500 nm), but lower concentrations of ultrafine particles (10-100 nm). The number, surface and volume concentrations, and size distributions of particles showed obvious seasonal variation and are also influenced by traffic emissions. Through correlation analysis, traffic emissions are proposed to be a more important contributor to Atkien-mode and accumulation-mode particles than coal firing. Around midday, the presence of nanoparticles and new particle formation is limited to pre-existing particles from traffic emissions and the mass transport of particles from suburban and rural areas. Compared with other studies in urban areas of Europe and the USA, the variation of particle number concentration and related gas concentration in Jinan between weekdays and weekends is smaller and the reasons has been deduced. 相似文献
6.
Spatial and temporal trend of Chinese manure nutrient pollution and assimilation capacity of cropland and grassland 总被引:5,自引:0,他引:5
Wei Ouyang Fanghua Hao Xinfeng Wei Haobo Huang 《Environmental science and pollution research international》2013,20(7):5036-5046
Dynamics of livestock and poultry manure nutrient was analyzed at a provincial scale from 2002 to 2008. The nutrient capacity of 18 kinds of croplands and grasslands to assimilate nutrients was assessed in the same temporal–spatial scale. Manure nitrogen (N) had increased from 5.111 to 6.228 million tons (MT), while manure phosphorus (P) increased from 1.382 to 1.607 MT. Manure N and P share similar spatial patterns of yields, but proportion of specialized livestock husbandry and contribution of leading livestock categories (swine, cattle, cow, sheep, layer chicken, broiler chicken) were different. The nutrients generated from dominant seven provinces took more than about half of total manure N in China. After subtracting the chemical fertilizers, there were some manure nutrient capacities in western part of China. Risk analysis of manure nutrient pollution overload in eastern and southern parts of China was serious, which should restrict livestock's developments. Amount of chemical fertilizers applied should be reduced to make room for manure nutrients. For the sake of greenhouse effects, the emission of methane (CH4) and nitrous oxide (NO x ) emissions in China is serious for the global change, thus merits further statistics and studies. The spatial and temporal pattern of Chinese manure nutrient pollution from livestock and the assimilation capacity of cropland and grassland can provide useful information for policy development on Chinese soil environment and livestock. 相似文献
7.
"珠三角"地区城市化对地下水水质影响案例研究 总被引:3,自引:0,他引:3
以珠海市东部沿海地区为例,探讨城市化地区地下水化学特征及污染状况的关系.结果表明土地利用类型与地下水水质变化密切相关.香洲区地下水化学组分差异较大,电导率范围为49.4~971 μS/cm.大部分地下水呈弱酸性,林地及果园用地地下水电导率较低,水化学类型多属于Na-HCO3型;老城区及新住宅区地下水类型多属于Ca-Mg-HCO3类型,电导率较高,受NO3-及Cl-污染较为严重.新住宅区地下水NO3-污染状况较老城区更为严重可能与旧村改造及市政排水设施不完善有关.除少数采样点外,地下水化学类型受季节变化影响不大.人为污染与自然风化过程是影响地下水化学类型的重要因素. 相似文献
8.
电镀废水中低浓度重金属离子的处理普遍采用混凝沉淀法,由此产生了大量重金属污泥,其安全处置过程复杂且成本较高.基于此,本文研究了一种资源化回收电镀废水中低浓度镍离子(Ni~(2+))和锌离子(Zn~(2+))的方法.结果表明,电镀废水经过铁盐混凝后,产生的沉淀溶解于硝酸中,得到硝酸溶解液中Ni~(2+)和Zn~(2+)浓度分别高达2.3 g·L~(-1)和1.5 g·L~(-1),而杂质铁(Fe~(3+))浓度为12.2 g·L~(-1).将硝酸溶解液直接进行水热处理,溶液中Ni~(2+)和Zn~(2+)浓度不变,残留铁浓度为1.76 g·L~(-1).向硝酸溶解液中添加乙酰丙酸(C_5H_8O_3)后进行水热处理,Ni~(2+)和Zn~(2+)浓度依然不变,但溶液中残留铁浓度仅为0.78 mg·L~(-1).硝酸溶解液中铁的去除主要源于水热条件下铁的水解和缩聚转化为高结晶度的赤铁矿.添加乙酰丙酸能够同时降低溶液中NO~-_3浓度和提升pH值,促进溶液中铁的水解和缩聚. 相似文献
9.
10.
Yangyan Cheng Ye Shan Yuhuan Xue Yujiao Zhu Xinfeng Wang Likun Xue Yanguang Liu Fangli Qiao Min Zhang 《Frontiers of Environmental Science & Engineering》2022,16(11):139