首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
环保管理   1篇
基础理论   3篇
污染及防治   4篇
评价与监测   2篇
社会与环境   2篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
This study quantifies the disruption of zooplankton population fluctuations in relation to two magnitudes of fire retardant contamination events using artificial ponds as model systems. Population time series were analysed using redundancy analysis where time was modelled with a principal coordinate of neighborhood matrices approach that identified relevant scales of fluctuation frequencies. Analyses of temporal coherence provided insight whether population fluctuations correlated with system intrinsic or extrinsic forces. Responses to stress were species-specific and context-dependant. Contamination changed temporal structure in some species. These alterations were associated with an increased intrinsic control of dynamics. In some cases the magnitude of impact was unrelated to contamination severity. Some populations were less tolerant of pollution in the low relative to the high concentration treatment. Results suggest that population-level monitoring of degraded sites may be suboptimal because disparate population responses complicate the selection of specific sentinel organisms to monitor stress.  相似文献   
2.
Freshwater ecosystems are important for global biodiversity and provide essential ecosystem services. There is consensus in the scientific literature that freshwater ecosystems are vulnerable to the impacts of environmental change, which may trigger irreversible regime shifts upon which biodiversity and ecosystem services may be lost. There are profound uncertainties regarding the management and assessment of the vulnerability of freshwater ecosystems to environmental change. Quantitative approaches are needed to reduce this uncertainty. We describe available statistical and modeling approaches along with case studies that demonstrate how resilience theory can be applied to aid decision-making in natural resources management. We highlight especially how long-term monitoring efforts combined with ecological theory can provide a novel nexus between ecological impact assessment and management, and the quantification of systemic vulnerability and thus the resilience of ecosystems to environmental change.  相似文献   
3.
This study evaluates whether the size structure of seston (the sum of living and nonliving particles in the water column) reflects the effects of fish on wetland water quality. Using enclosures, we measured water quality and zooplankton community structure in the presence and absence of two fish species with distinct foraging strategies [benthivorous carp (Cyprinus carpio) and planktivorous mosquitofish (Gambusia holbrooki)]. Seston collected from the enclosures was counted and sized automatically with a Coulter counter, and the size structure in the range of 1–60 μm was modelled using the underlying Pareto distribution of particles. Only Cyprinus contributed to a loss of water quality (increased nutrient levels, algal and non-algal turbidity, hypoxia), while both fish species changed zooplankton community composition compared to fishless controls. However, these changes were not reflected in parameters [goodness of fit (r 2) and parameter c (slopes)] of Pareto models. Multivariate statistics suggest that seston size structure responded more to environmental gradients related to water depth but the relationships were also weak. Our overall result contrasts with the regulation of size spectra constructed from living organisms. Although seston integrates many structural and functional features of the water column, the lack of strong relationships between Pareto model parameters and water quality suggests that a size-based approach to characterise seston structure has a limited potential for assessing biota-mediated effects in wetlands in a straightforward manner.  相似文献   
4.
Although long-term fire retardants (LTR) gain increasingly acceptance as effective tools for wildfire management, recent studies indicate their potential harmfulness in the environment, especially in aquatic ecosystems. This study comprises a first laboratory impact assessment of LTR action in temporal Mediterranean wetlands, using seed germination of Typha domingensis as indicator of impact. Our aim was to identify application rates upon which seed germination could be significantly affected. We tested for low (1 l m(-2)) and high (3 l m(-2)) application rates of Fire Trol 934 which are recommended by the manufacturers as a function of fuel characteristics. In addition, we simulated the impact of a higher application rate of 5 l m(-2) because inhomogeneous dispersal of the LTR during fire control and prevention operations can result in locally elevated applications. Results of a microcosm experiment indicate that application rates of 1 or 3 l m(-2) can impact Typha germination rates in the short-term via indirect LTR-mediated effects on water quality, which suppressed necessary cues for germination. However, a subsequent experiment with Petri dishes, using seeds isolated from the LTR treated sediments did not show significantly different germination rates between the control and the treatments with application rates of 1 or 3 l m(-2). This suggests that retardant pre-application germination success could be recovered in nature once the retardant is eliminated. By contrast, seeds almost completely failed to germinate in the microcosm experiment and the subsequent Petri dish essay when an application rate of 5 l m(-2) was used. This suggests a critical level upon which Typha seed germination may be perpetually limited. Research should be extended to other plant species to provide fire managers with guidelines for environmentally safe use of LTR in the Mediterranean region.  相似文献   
5.
Although our understanding of environmental risk assessment in temporary wetlands has been improved by the use of multi-species toxicity testing, we still know little of how landscape variables mediate the strength of, and recovery from, anthropogenic stress in such ecosystems. To bridge this research gap, we provide a theoretical framework of the response of temporary wetlands to anthropogenic disturbance along a habitat-isolation continuum based on island biogeography theory, landscape ecology and dispersal and colonization strategies of temporary wetland organisms.  相似文献   
6.
Temporary ponds are physically disturbed environments that fluctuate on seasonal and interannual scales. These ecosystems are also susceptible to anthropogenic perturbation such as contamination inputs. However, the interactive effects of natural disturbance and anthropogenic stress on ecosystem processes and community dynamics have hardly been assessed in these ecosystem types. We used a multiple before-after control-impact (MBACI) design to study zooplankton community recovery from low and high inputs of a fire retardant in artificially constructed ponds over three hydroperiods. The retardant caused a decline in species richness and an increase in rotifers during summer and winter months relative to controls and pretreatment dates, and the duration of these changes varied among retardant treatments. In nonmetric, multidimensional scaling analyses the increased rotifer densities were reflected in loops that showed recurring deviations from and (upon collapse) approaches to reference conditions, while the effects of the anthropogenic stressor persisted in the ponds. The amplitudes of fluctuation followed no regular patterns; it varied with retardant treatment level and was higher in the third hydroperiod compared to the second in one of the treatments. From a temporal perspective, this non-dampened pattern suggests a new cause-effect mechanism for disturbance ecology, which we refer to as a "protracted press disturbance, roller coaster response" relationship. This model emphasizes stochastic oscillations in community composition, punctuated by periods in which the community approaches reference conditions. From the applied viewpoint, this model suggests that the accurate detection of perturbation and the implementation of sound management and restoration strategies will require intensive sampling designs that span multiple hydroperiods in persistently degraded ponds.  相似文献   
7.
Export of nitrogen from catchments: a worldwide analysis   总被引:2,自引:0,他引:2  
This study reviews nitrogen export rates from 946 rivers of the world to determine the influence of quantitative (runoff, rainfall, inhabitant density, catchment area, percentage of land use cover, airborne deposition, fertilizer input) and qualitative (dominant type of forest, occurrence of stagnant waterbodies, dominant land use, occurrence of point sources, runoff type) environmental factors on nitrogen fluxes. All fractions (total, nitrate, ammonia, dissolved organic and particulate organic) of nitrogen export showed a left-skewed distribution, which suggests a relatively pristine condition for most systems. Total nitrogen export showed the highest variability whereas total organic nitrogen export comprised the dominant fraction of export. Nitrogen export rates were only weakly explained by our qualitative and quantitative environmental variables. Our study suggests that the consideration of spatial and temporal scales is important for predicting nitrogen export rates using simple and easy-to-get environmental variables. Regionally based modelling approaches prove more useful than global-scale analyses.  相似文献   
8.
Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management.  相似文献   
9.
Despite international policy implementation to reduce atmospheric acid deposition and restore natural resources from cultural acidification, evidence of ecological recovery is equivocal. Failure to meet recovery goals means that acidification still threatens biodiversity in many areas of the world. Managers thus need information to manage biodiversity, especially its components that are sensitive to stress (acid-sensitive taxa). We analyzed 20-year time series (1988-2007) of water quality and littoral invertebrates in acidified and circum-neutral lakes across Sweden to evaluate regional biodiversity dynamics and the extent to which changes in water quality affect these dynamics. We used multivariate time series modeling to (1) test how individual species groups within invertebrate communities track changes in the abiotic environment and (2) reveal congruencies of taxon contributions to species group change across lakes. Chemical recovery in the lakes was equivocal, and increases of pH and alkalinity were observed in subsets of acidified and circum-neutral lakes. Time series analyses revealed two different patterns of species groups for invertebrate communities across lakes; the first species group showed monotonic change over time, while the second group showed fluctuating temporal patterns. These independent species groups correlated distinctly with different sets of environmental variables. Recovery of pH and alkalinity status was associated with species group patterns only in a few lakes, highlighting an overall weak recovery of invertebrate species. The sets of species, including acid-sensitive taxa, composing these species groups differed markedly across lakes, highlighting context-specific responses of invertebrates to environmental variation. These results are encouraging because disparate local-scale dynamics maintain the diversity of sensitive invertebrate species on a regional scale, despite persisting acidification problems. Our study can inform and help refine current acidification-related policy focused on sensitive biodiversity elements.  相似文献   
10.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号