首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   7篇
评价与监测   5篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Sewage treatment works are one of the major sources that cause atmospheric odour pollution. The increase in the number of complaints about odour nuisance is due to the increase in environmental concerns. Unfortunately, the legislation on odour nuisance from sewage treatment works is very limited. In order to determine suitable thresholds on which to base legal standards, reliable and efficient odour measurement methods need to be defined. A chemical sensor array was developed for the purpose of measuring wastewater odour. This paper describes the development of the chemical sensor system which is specifically tuned to odours of wastewater origin and which can give an electronic measure of the wastewater odours. Odour emissions from a wastewater treatment facility were detected by using a quartz crystal microbalance (QCM) sensor array. The array consists of nine sensor elements, which were coated with different materials. In this paper, the usage of these novel instruments in the water industry was shown.  相似文献   
2.
In this study, the water quality of the Coruh River Basin, which is located in the Eastern Black Sea Region of Turkey, was evaluated. The water quality data measurement results obtained by the State Hydraulic Works 26th Regional Directorate from four different sites over a course of 4 years between the years 2011 and 2014 in the Coruh River Basin were used as the data. In this study, the water quality was evaluated by using the Canadian Council of Ministers of the Environmental Water Quality Index (CCME WQI) method and discriminant analysis (DA). The water quality of the Coruh River Basin was calculated as 30.4 and 71.35 by using the CCME WQI and classified as “poor,” “marginal,” and “fair”. These values show that the water of the Coruh River Basin is degraded and under threat and its overall quality is not close to natural or desired levels. The monitoring sites were divided into two groups by the cluster analysis (CA). DA is a multivariate analysis technique used to divide individuals or objects into different groups and assign them into predetermined groups. As a result of DA, calcium (Ca) and sulfate (SO4) were determined to be significant parameters in the determination of the water quality of the Coruh River Basin. The success of DA depends on the percentage of correct classification. As a result of the analysis, 23% of the parameters in the first measurement point, 69.2% of the parameters in the second and third measurement points, and 76.9% of the parameters in the fourth measurement point were classified correctly. Since the second measurement point is the discharge point of a copper mine, it can be said that the water quality parameters measured may provide accurate results in detecting pollution at this point.  相似文献   
3.
Among alternative fuels, biodiesel has been emphasized as a substantial candidate for diesel engines because of many advantages. However, the main shortcomings preventing more widespread use of biodiesel are high production cost and viscosity. In order to simultaneously overcome both of these shortcomings, the reaction conditions for the transesterification of waste cooking oil (WCO) were optimized using Taguchi and the full factorial design approaches. The analyses of signal to noise ratio and variance were also performed to identify the dominance of reaction conditions on viscosity and biodiesel yield. As a result, the optimal reaction conditions giving the lowest kinematic viscosity (3.991 cSt) and the highest biodiesel yield (98.19%) were determined to be as follows: sodium methoxide amount of 1.00 wt%, reaction time of 60 min, reaction temperature of 55 °C, and methanol to oil molar ratio of 6:1. The catalyst amount and methanol to oil molar ratio were found to be the most significant conditions influencing on the viscosity (10.36% and 78.87% contributions) and the yield (58.48% and 20.17% contributions), respectively. Finally, all physicochemical properties of final waste cooking oil biodiesel (WCOB) produced under optimal reaction conditions were found to meet the EN 14214.  相似文献   
4.
Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000-40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the fullscale sensitivity of the gas sensing equipment. The use of 46-90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   
5.
Objectives The purpose of this study was to determine electromagnetic fields, electric fields, humidity, temperature, and illumination levels in hairdresser salons located in the downtown area of Aydin, Turkey. Also some health problems which could be related with the occupational factors are evaluated. Materials and methods The study was carried out in 30 hairdresser salons, all of which had been registered within the past 5 years. Electric and electromagnetic fields, illumination, temperature and humidity measurements were determined for hairdryers, hood hairdryers and depilatory heaters in the participating salons. A brief questionnaire about characteristics and the health status of hairdressers and workplace conditions was prepared and administered to the hairdressers at the salons. Results The mean electric fields of hairdryers, hood hairdryers and depilatory heaters were determined as 518 ± 74, 1,123 ± 199, and 648 ± 146 in V/m, respectively, at 5 cm from the surface of each device. These appliances generate mean electromagnetic fields in excess of 0.25 μT at 5 cm: hand-held hairdryers, 5.0 ± 0.7 μT; hood hairdryers, 1.6 ± 0.3 μT; and depilatory heaters 1.9 ± 0.6 μT. Total average of cumulative electric and electromagnetic fields, measured at a distance of 90 cm from the surface of these three devices was calculated to be 98.8 V/m and 0.5 μT, in the participating salons. Conclusions This preliminary study suggests that physical environmental factors in the salons may be contributing to the health problems of the hairdressers, and the electrical equipments in the workplaces may have cumulative electric and electromagnetic effects.  相似文献   
6.
Abstract

Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulflde (H2S) from dynamic isolation flux chambers. H2S (80–4000 ppb) and NH3 (5000–40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000–40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the full-scale sensitivity of the gas sensing equipment. The use of 46–90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   
7.
Environmental Science and Pollution Research - In this study, two macroporous butyl rubber (BR)–based sorbents prepared in benzene (H-BR) and in cyclohexane (L-BR) with different porosities...  相似文献   
8.
Species reproduction is an important determinant of population dynamics. As such, this is an important parameter in environmental risk assessment. The closure principle computational approach test (CPCAT) was recently proposed as a method to derive a NOEC/LOEC for reproduction count data such as the number of juvenile Daphnia. The Poisson distribution used by CPCAT can be too restrictive as a model of the data-generating process. In practice, the generalized Poisson distribution could be more appropriate, as it allows for inequality of the population mean \(\mu\) and the population variance \(\sigma ^2\). It is of fundamental interest to explore the statistical power of CPCAT and the probability of determining a regulatory relevant effect correctly. Using a simulation, we varied between Poisson distribution (\(\mu =\sigma ^2\)) and generalized Poisson distribution allowing for over-dispersion (\(\mu <\sigma ^2\)) and under-dispersion (\(\mu >\sigma ^2\)). The results indicated that the probability of detecting the LOEC/NOEC correctly was \(\ge 0.8\) provided the effect was at least 20% above or below the mean level of the control group and mean reproduction of the control was at least 50 individuals while over-dispersion was missing. Specifically, under-dispersion increased, whereas over-dispersion reduced the statistical power of the CPCAT. Using the well-known Hampel identifier, we propose a simple and straight forward method to assess whether the data-generating process of real data could be over- or under-dispersed.  相似文献   
9.

This study involves the monitoring of organic pollutants using transplanted mussels (Mytilus galloprovincialis) as bioindicator organisms and semipermeable membrane devices (SPMDs) as passive samplers. Mussels and SPMDs were deployed to marinas, shipyards and shipbreaking yards on the coastal area of Turkey and retrieved after 60 days. Polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticide (OCP) compounds were analysed with high-resolution GC-MS. Total PAH concentrations in SPMDs and mussels ranged from 200 to 4740 ng g sampler?1 and from 7.0 to 1130 ng g?1 in wet weight (ww). PCB and OCP concentrations in SPMDs changed between 0.04–200 and 4.0–26 ng g sampler?1, respectively. The highest PCB (190 ng g?1 ww) and OCP (200 ng g?1 ww) concentrations in mussels were measured at shipyard stations. A strong correlation was observed between the PAH and PCB concentrations in SPMDs and mussels. Enzyme assays (acetylcholinesterase, ethoxyresorufin-O-deethylase, glutathione S-transferase, glutathion reductase and carboxylesterase activities) were performed as biomarkers to reveal the effects of pollution on the mussels. There was no clear relationship found between the enzyme levels and the pollutant concentrations in mussels. Integrated biomarker responses were calculated to interpret the overall effect of pollutants.

  相似文献   
10.

Introduction

This study collected long-term airborne lead concentrations in the Korean peninsula and analyzed their temporal, spatial, and cancer risk characterization.

Methods

Approximately, 12,000 airborne samples of total suspended particulate (TSP) were collected from 30 ambient air monitoring stations in inland (Daegu, Daejeon, Gwangju, and Seoul) cities and portal cities (Incheon, Busan, and Ulsan) over a period of 7?years (2004?C2010). High volume air samplers were employed to collect daily TSP samples during the second week of the consecutive months throughout the entire study period. The concentrations of Pb extracted from the TSP samples were analyzed using either inductively coupled plasma-atomic emission or flame atomic absorption spectrometry.

Results

The long-term high mean Pb concentrations were observed in the port cities including Incheon (88?±?18?ng/m3), Ulsan (61?±?7?ng/m3), and Busan (58?±?6?ng/m3). In the temporal analysis, seasonal mean Pb levels were relatively higher in winter and spring than those in summer and fall. In the spatial analysis, the mean Pb levels in spring, winter, and fall from Incheon, which showed the highest seasonal concentrations except summer, were 110?±?19, 101?±?18, and 76?±?23?ng/m3, respectively. In summer, the highest seasonal mean Pb level was observed in the largest industrial city and the second port city, Ulsan (78?±?15?ng/m3), followed by Incheon (65?±?13?ng/m3).

Conclusion

The estimated excess cancer risk analysis showed that inhalation of Pb could result in cancer for one or two persons per million of population in the Korean peninsula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号