首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   4篇
评价与监测   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   
2.
3.
On the basis of the recently estimated emission inventory for East Asia with a resolution of 1×1°, the transport and chemical transformation of sulfur compounds over East Asia during the period of 22 February through 4 May 2001 was investigated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the regional atmospheric modeling system (RAMS). For evaluating the model performance simulated concentrations of sulfur dioxide (SO2) and aerosol sulfate (SO42−) were compared with the observations on the ground level at four remote sites in Japan and on board aircraft and vessel during the transport and chemical evolution over the Pacific and Asian Pacific regional aerosol characterization experiment field campaigns, and it was found that the model reproduces many of the important features in the observations, including horizontal and vertical gradients. The SO2 and SO42− concentrations show pronounced variations in time and space, with SO2 and SO42− behaving differently due to the interplay of chemical conversion, removal and transport processes. Analysis of model results shows that emission was the dominant term in regulating the SO2 spatial distribution, while conversion of SO2 to SO42− in the gas phase and the aqueous phase and wet removal were the primary factors that controlled SO42− amounts. The gas phase and the aqueous phase have the same importance in oxidizing SO2, and about 42% sulfur compounds (25% in SO2) emitted in the model domain was transported out, while about 57% (35% by wet removal processes) was deposited in the domain during the study period.  相似文献   
4.
Three Lagrangian experiments were conducted during IGAC's second aerosol characterization experiment (ACE-2) in the area between Portugal, Tenerife and Madeira in June/July 1997. During each Lagrangian experiment, a boundary layer air mass was followed for about 30 h, and the temporal evolution of its chemical and aerosol composition was documented by a series of vertical profiles and horizontal box pattern flown by the Meteorological Research Flight research aircraft Hercules C130. The wealth of observational data that has been collected during these three Lagrangian experiments is the basis for the development and testing of a one-dimensional Lagrangian boundary layer model with coupled gas, aqueous, and aerosol phase chemistry. The focus of this paper is on current model limitations and strengths. We show that the model is able to represent the dynamical and chemical evolution of the marine boundary layer, in some cases requiring adjustments of the subsidence velocity and of the surface heat fluxes. Entrainment of a layer rich in ozone and carbon monoxide from a residual continental boundary layer into the marine boundary layer as well as in-cloud oxidation of sulphur dioxide by hydrogen peroxide are simulated, and coherent results are obtained, concerning the evolution of the small, presumably sulphate–ammonia aerosol mode.  相似文献   
5.
Alkyl nitrates (C1–C5) were measured at two sites (near urban and rural) in southeast England during the Tropospheric Organic Chemistry Experiment (TORCH). Methyl nitrate was the dominant species during both campaigns accounting for on average about one third of the total measured alkyl nitrates. High mixing ratios (>50 pptv) and variability of methyl nitrate were observed at the near urban site (TORCH1) that were not seen at the rural site (TORCH2) and which could not be explained by local photochemical production or direct emissions. The diurnal variation of methyl nitrate during TORCH1 showed a morning maximum that would be consistent with nighttime chemistry followed by transport to the surface by boundary layer dynamics. Similarly, elevated morning mixing ratios were also observed during TORCH2 although the magnitudes were much smaller. As a result, methyl nitrate could represent a tracer for nighttime chemistry seen at the ground the following day. At both campaigns, the dominant source of short chain alkyl nitrates and carbonyl precursor radicals (≤C4) were from decomposition of larger compounds. The magnitude of the source increased with decreasing carbon number consistent with increasing total precursor abundance. Non-photochemical emissions of acetaldehyde and acetone could not be accounted for by automobile exhaust emissions alone and indicated that other direct sources are likely important in this environment.  相似文献   
6.
This paper describes a new dual-channel PEroxy RadiCal Amplification (PERCA) instrument, which has been designed to improve the time resolution and signal to noise and to reduce the interference caused by variations in ambient ozone concentrations. The instrument was run at the Weybourne Atmospheric Observatory (WAO), North Norfolk, during WAOWEX (Weybourne Atmospheric Observatory Winter Experiment) in January/February 2002 and INSPECTRO (Influence of clouds on the spectral actinic flux in the lower troposphere) in September 2002. The performance of the instrument is assessed and compared to that of a single channel instrument. In particular, it is shown how the precision is greatly improved in fluctuating background ozone conditions. In addition the improved time response of the instrument allows changes in peroxy radical concentrations to be related to rapid changes in nitric oxide concentrations and the ozone photolysis frequency, j(O(1)D).  相似文献   
7.
A field experiment to investigate the formation of nitrate as an airstream passes through a hill cap cloud has been performed at the UMIST field station on Great Dun Fell. It has been shown that the aerosol nitrate concentration increased by about 0.5 microg m(-3) as the airstream passed through the cloud during the night. At sunrise the nitrate production disappeared. It is suggested that the most likely mechanism for this nitrate production was due to the solution of N2O5 and NO3 formed from the reaction of NO2 with O3. These higher oxides build up overnight in the absence of short wave radiation to photolyse them. Other possible mechanisms of nitrate production are also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号