首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   1篇
基础理论   2篇
污染及防治   1篇
评价与监测   2篇
  2022年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Indiscriminate adoption and use of cell phone technology has tremendously increased the levels of electromagnetic field radiations (EMFr) in the natural environment. It has raised the concerns among the scientists regarding the possible risks of EMFr to living organisms. However, not much has been done to assess the damage caused to plants that are continuously exposed to EMFr present in the environment. The present study investigated the biochemical mechanism of interference of 900 MHz cell phone EMFr with root formation in mung bean (Vigna radiata syn. Phaseolus aureus) hypocotyls, a model system to study rhizogenesis in plants. Cell phone EMFr enhanced the activities of proteases (by 1.52 to 2.33 times), polyphenol oxidases (by 1.5 to 4.3 times), and peroxidases (by 1.5 to 2.0 times) in mung bean hypocotyls over control. Further, EMFr enhanced malondialdehyde (an indicator of lipid peroxidation), hydrogen peroxide, and proline content, indicating a reactive oxygen species-mediated oxidative damage in hypocotyls. It was confirmed by the upregulation in the activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase, and glutathione reductase) suggesting their possible role in providing protection against EMFr-induced oxidative damage. The study concluded that cell phone radiations affect the process of rhizogenesis through biochemical alterations that manifest as oxidative damage resulting in root impairment.  相似文献   
2.
A study was undertaken to explore the phytotoxicity of volatile essential oil from Eucalyptus citriodora Hook. against some weeds viz. Bidens pilosa, Amaranthus viridis, Rumex nepalensis, and Leucaena leucocephala in order to assess its herbicidal activity. Dose-response studies conducted under laboratory conditions revealed that eucalypt oils (in concentration ranging from 0.0012 to 0.06%) greatly suppress the germination and seedling height of test weeds. At 0.06% eucalypt oil concentration, none of the seed of test weeds germinated. Among the weed species tested, A. viridis was found to be the most sensitive and its germination was completed inhibited even at 0.03%. Not only the germination and seedling growth, even the chlorophyll content and respiratory activity in leaves of emerged seedlings were severely affected. In A. viridis chlorophyll content and respiratory activity were reduced by over 51% and 71%, respectively, even at a very low concentration of 0.06%. These results indicated an adverse effect of eucalypt oils on the photosynthetic and energy metabolism of the test weeds. A strong negative correlation was observed between the observed effect and the concentration of eucalypt oil. Based on the study, it can be concluded that oil from E. citriodora possess strong inhibitory potential against weeds that could be exploited for weed management.  相似文献   
3.
This paper describes an assessment tool for analysing material handling tasks and its application for material handling tasks prevalent in engine bearing industry. After a close observation of material handling tasks spread over many days, a list of tasks and parameters/variables affecting those tasks was made. Ergonomic conditions present in these tasks and their deficiencies were then identified and on the basis of the relationships between the tasks and their affinities, categories were developed. Using the data of those categories and various conditions and parameters, an assessment tool called MHAC (material handling assessment chart) was developed.  相似文献   
4.
Chromium toxicity and tolerance in plants   总被引:1,自引:0,他引:1  
Chromium (Cr) is the second most common metal contaminant in ground water, soil, and sediments due to its wide industrial application, hence posing a serious environmental concern. Among various valence states, Cr(III) and Cr(VI) are the most stable forms. Cr(VI) is the most persistent in the soil and is highly toxic for biota. Since Cr is a non-essential element for plants, there is no uptake mechanism; Cr is taken up along essential elements such as sulfate through sulfate transporters. Cr accumulation in plants causes high toxicity in terms of reduction in growth and biomass accumulation, and Cr induces structural alterations. Cr interferes with photosynthetic and respiration processes, and water and minerals uptake mechanism. Various enzymatic activities related to starch and nitrogen metabolism are decreased by Cr toxicity either by direct interference with the enzymes or through the production of reactive oxygen species. Cr causes oxidative damage by destruction of membrane lipids and DNA damage. Cr may even cause the death of plant species. Few plant species are able to accumulate high amount of Cr without being damaged. Such Cr-tolerant, hyperaccumulator plants are exploited for their bioremediation property. The present review discusses Cr availability in the environment, Cr transfer to biota, toxicity issues, effect on germination and plant growth, morphological and ultrastructural aberrations, biochemical and physiological alterations, effect on metabolic processes, Cr-induced alterations at the molecular level, Cr hyperaccumulation and Cr detoxification mechanism, and the role of arbuscular mycorrhizae in Cr toxicity, in plants.  相似文献   
5.
Environmental Science and Pollution Research - Toxic contaminants (metals and metal-containing compounds) are accumulating in the environment at an astonishing rate and jeopardize human health....  相似文献   
6.
Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants—Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号