首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
  2021年   1篇
  2017年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Theidentification of key biodiversity areas (KBA) was initiated by the International Union for Conservation of Nature in 2004 to overcome taxonomic biases in the selection of important areas for conservation, including freshwater ecosystems. Since then, several KBAs have been identified mainly based on the presence of trigger species (i.e., species that trigger either the vulnerability and or the irreplaceability criterion and thus identify a site as a KBA). However, to our knowledge, many of these KBAs have not been validated. Therefore, classical surveys of the taxa used to identify freshwater KBAs (fishes, molluscs, odonates, and aquatic plants) were conducted in Douro (Iberian Peninsula) and Sebou (Morocco) River basins in the Mediterranean Biodiversity Hotspot. Environmental DNA analyses were undertaken in the Moroccan KBAs. There was a mismatch between the supposed and actual presence of trigger species. None of the trigger species were found in 43% and 50% of all KBAs surveyed in the Douro and Sebou basins, respectively. Shortcomings of freshwater KBA identification relate to flawed or lack of distribution data for trigger species. This situation results from a misleading initial identification of KBAs based on poor (or even inaccurate) ecological information or due to increased human disturbance between initial KBA identification and the present. To improve identification of future freshwater KBAs, we suggest selecting trigger species with a more conservative approach; use of local expert knowledge and digital data (to assess habitat quality, species distribution, and potential threats); consideration of the subcatchment when delineating KBAs boundaries; thoughtful consideration of terrestrial special areas for conservation limits; and periodic field validation.  相似文献   
2.

The aim of our study is to evaluate the impact of Bousfer desalination plant brine discharges on the Algerian west coast, on a natural population of the marine gastropod mollusc Patella rustica. The effects of a chronic exposure to such discharges are complex to understand due to the combined effects of environmental physico-chemical parameters (e.g., high salinity) and different pollutants that can modulate the physiological responses of this species to stress. In this context, we assessed the biological effects in a marine species P. rustica, by a multibiomarker approach that provided information on the health status of organisms in response to such an environmental stress. We measured biomarkers in the whole soft tissues of limpets as indicators of neurotoxicity (AChE activity), oxidative stress (CAT, SOD, GR, and GPx activities), biotransformation (GST), oxidative damage (LPO through TBARS levels), and genotoxicity (CSP 3-like activity). In parallel, hydrological parameters were measured in the Bay of Oran, at four selected sites: site H considered as a “hotspot,” located at Bousfer desalination plant; two other sites E and W, at the east and the west of H respectively; finally, site R “reference” located in Madragh, which is considered as a remote clean site. Our analyses revealed that the activities of antioxidant defense enzymes reached the highest levels in P. rustica collected from site H. The activation of antioxidant defense system in these organisms translated the alteration of their status health, reflecting a level of environmental disruption generated by the desalination plant brine discharges and the high salinity in this area. We also observed that the tissues of limpets collected from site H as well as the two other sites, E and W, had undergone molecular damage, confirmed by the high levels of CSP 3-like activity. This damage resulted from chronic exposure to environmental conditions, potentially genotoxic, due to the desalination plant discharges. The present results indicate the adverse impact of brine effluents from desalination plants on marine fauna and suggest the need for a more consistent approach to environmental management of brine discharges.

  相似文献   
3.
The effect of ions, including Na(+), Mg(2+), Ca(2+), Cl(-), SO(4)(2-) and CO(3)(2-), at various initial concentrations, on the kinetics of cadmium sorption by chitin was studied at 25 degrees C and free initial pH solution in batch conditions. The presence of these ions in solution was found to inhibit the uptake of cadmium by chitin to different degrees: sodium and chloride ions have no significant effect. For Mg(2+), Ca(2+), SO(4)(2-) and CO(3)(2-) ions, the effects ranged from a large inhibition of cadmium by Ca(2+) and CO(3)(2-) to a weak inhibition by Mg(2+) and SO(4)(2-). These results indicate that the uptake sites of these ions are the same. No ion was found to enhance cadmium uptake. The results also showed that the kinetics of sorption are best described by a pseudo second-order expression than a first or second-order model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号