首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
  2007年   2篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Organic materials including a peat-mineral mix (PM), a forest floor-mineral mix (L/S), and a combination of the two (L/PM) were used to cap mineral soil materials at surface mine reclamation sites in the Athabasca oil sands region of northeastern Alberta, Canada. The objective of this study was to test whether LFH provided an advantage over peat by stimulating microbial activity and providing more available nitrogen for plant growth. Net nitrification, ammonification, and N mineralization rates were estimated from field incubations using buried bags. In situ gross nitrification and ammonification rates were determined using the 15N isotope pool dilution technique, and microbial biomass C (MBC) and N (MBN) were measured by the chloroform fumigation-extraction method. All reclaimed sites had lower MBC and MBN, and lower net ammonification and net mineralization rates than a natural forest site (NLFH) used as a control, but the reclamation treatment using LFH material by itself had higher gross and net nitrification rates. A positive correlation between in situ moisture content, dissolved organic N, MBC, and MBN was observed, which led us to conduct a moisture manipulation experiment in the laboratory. With the exception of the MBN for the L/S treatment, none of the reclamation treatments ever reached the levels of the natural site during this experiment. However, materials from reclamation treatments that incorporated LFH showed higher respiration rates, MBC, and MBN than the PM treatment, indicating that the addition of LFH as an organic amendment may stimulate microbial activity as compared to the use of peat alone.  相似文献   
2.
Naphthenic acids are components of most petroleums, including those found in the Athabasca Oil Sands of northeastern Alberta. Some naphthenic acids that are solubilized during bitumen extraction from oil sands are acutely toxic to a variety of organisms. Four-month enrichment cultures obtained from the rhizospheres of five plant species native to Alberta, and established with the addition of bitumen (0.5%) as the sole carbon source, revealed a high potential for aerobic degradation of a Merichem commercial preparation of naphthenic acids. Changes in the concentration and composition of the naphthenic acids mixtures during incubation were followed using high-performance liquid chromatography and gas chromatography-electron impact mass spectrometry. Concentrations did not significantly change in the sterile control, but they decreased by up to 90% after 10 days of incubation in the viable cultures. Lower molecular mass naphthenic acids were preferentially degraded, while the proportion of high molecular mass acids increased during incubation. By day 17, the most abundant ions were derived from cellular membranes, corresponding to an increase in microbial numbers in the cultures as naphthenic acids were metabolized. This study is the first to demonstrate the biodegradation potential of microorganisms from rhizosphere soils to biodegrade naphthenic acids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号