首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
废物处理   2篇
环保管理   1篇
综合类   2篇
污染及防治   5篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   3篇
  2012年   1篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), elemental(CHN) analysis, Fourier transform infrared(FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO_2 capture.The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO_2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO_2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO_2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO_2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   
3.

The level of nitrate in water has been increasing considerably all around the world due to vast application of inorganic nitrogen fertiliser and animal manure. Because of nitrate’s high solubility in water, human beings are getting exposed to it mainly through various routes including water, food etc. Various regulations have been set for nitrate (45–50 mgNO3?/L) in drinking water to protect health of the infants from the methemoglobinemia, birth defects, thyroid disease, risk of specific cancers, i.e. colorectal, breast and bladder cancer caused due to nitrate poisoning. Different methods like ion exchange, adsorption, biological denitrification etc. have the ability to eliminate the nitrate from the aqueous medium. However, adsorption process got preference over the other approaches because of its simple design and satisfactory results especially with surface modified adsorbents or with mineral-based adsorbents. Different types of adsorbents have been used for this purpose; however, adsorbents derived from the biomass wastes have great adsorption capacities for nitrate such as tea waste-based adsorbents (136.43 mg/g), carbon nanotube (142.86 mg/g), chitosan beads (104 mg/g) and cetyltrimethylammonium bromide modified rice husk (278 mg/g). Therefore, a thorough literature survey has been carried out to formulate this review paper to understand various sources of nitrate pollution, route of exposure to the human beings, ill effects along with discussing the key developments as well as the new advancements reported in procuring low-cost efficient adsorbents for water purification.

  相似文献   
4.
Optimal biogas production and sludge treatment were studied by co-digestion experiments and modeling using five different wastewater sludges generated from paper, chemical, petrochemical, automobile, and food processing industries situated in Ulsan Industrial Complex, Ulsan, South Korea. The biomethane production potential test was conducted in simplex-centroid mixture design, fitted to regression equation, and some optimal co-digestion scenarios were given by combined desirability function based multi-objective optimization technique for both methane yield and the quantity of sludge digested. The co-digestion model incorporating main and interaction effects among sludges were utilized to predict the maximum possible methane yield. The optimization routine for methane production with different industrial sludges in batches were repeated with the left-over sludge of earlier cycle, till all sludges have been completely treated. Among the possible scenarios, a maximum methane yield of 1161.53 m3 is anticipated in three batches followed by 1130.33 m3 and 1045.65 m3 in five and two batches, respectively. This study shows a scientific approach to find a practical solution to utilize diverse industrial sludges in both treatment and biogas production perspectives.  相似文献   
5.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   
6.
Liao YC  Chien SW  Wang MC  Shen Y  Hung PL  Das B 《Chemosphere》2006,65(2):343-351
The effect of transpiration (high and low) on Pb uptake by leaf lettuce and on water soluble low molecular weight organic acids (LMWOAs) in rhizosphere has been studied. After two weeks of growth the plants were cultured in greenhouse for more four weeks and two days. Pb(NO(3))(2) solutions of different concentrations (100, 200, and 300 mg l(-1) of Pb) were then added to the quartz sand pots of different plants and studies were initiated. Blank experiments (without treating the quartz sand pots with Pb(NO(3))(2) solutions) were also run in parallel. No significant differences in the growth of the plants with the concentrations of added Pb(NO(3))(2) solutions were observed by both low and high transpirations at the end of the 0, 3rd, and 10th days of studies. The total evaporation of the volatiles during 10 days did not depend on the concentration of Pb(2+) but with high transpiration the rate of evaporation was significantly higher than with low transpiration. Uptake of Pb by shoots and roots of the plants was found to be proportional to the concentration of various Pb(NO(3))(2) solutions added and more accumulation was observed in roots than in shoots at the end of 3rd and 10th days. High transpiration created more Pb uptake than low transpiration did. One volatile acid, propionic acid and nine non-volatile acids, lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, D-tartaric, trans-aconitic, and citric acids in rhizosphere quartz sands were identified and quantified by gas chromatography (GC) analysis. D-Tartaric and citric acids were major among the non-volatile acids. The amount of LMWOAs in rhizosphere quartz sands increased with the higher amount of Pb uptake and also with the duration of studies. The total quantities of the LMWOAs in the rhizosphere quartz sands were significantly higher under high transpiration with 300 mg l(-1) Pb solution addition at the end of 10th day. The present study shows prominent correlation between transpiration and uptake of heavy metal and interesting correlation between Pb contaminated level and quantity of water soluble LMWOAs in rhizosphere quartz sands. The latter thus deserves of further studies.  相似文献   
7.
8.
The biodegradability of calcium stearate (CaSt) and cobalt stearate (CoSt) filled polypropylene (PP) films were investigated in this work. The PP films were prepared using melt blending technique followed by hot press moulding. On the basis of their tensile properties, the optimum amount of pro-oxidants was taken as 0.2 phr. Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used for the characterization of optimized films. Presence of pro-oxidant in the PP was confirmed by the FTIR studies. Addition of pro-oxidants in the films decreased the thermal stability as revealed by TGA analysis. Crystallinity of the pro-oxidant filled PP decreased with addition of pro-oxidants as showen by DSC. The maximum biodegradation of CaSt and CoSt containing PP films was showen 7.65 and 8.34%, respectively with 0.2 phr. Both the microbial test and plant growth test (on corn and tomato) indicated that biodegradation intermediates were non toxic.  相似文献   
9.

Globally, it is established that the partial lockdown system assists to improve the health of the total environment due to inadequate anthropogenic actions in different economic sectors. The ample research on fitness of environment has been proved that the strict imposition of lockdown was the blessings of environment. The river Damodar has historical significance and lifeline for huge population of Jharkhand and West Bengal state of India but in the recent years the water quality has been deteriorated due to untreated industrial effluents and urban sewage. The main objective of this study is to examine the water quality of river Damodar during and prelockdown phase for domestic use and restoration of river ecosystem. A total of eleven (11) effluent discharge sites were selected in prelockdown and during lockdown phase. A new approach of water quality assessment, i.e., water pollution index (WPI) has been applied in this study. WPI is weightage free, unbiased method to analysis of water quality. The result shows that the physical, chemical and heavy elements were found beyond the standard limit in prelockdown period. The cation and anion were arranged in an order of Na2+ ?>?K+ ?>?Ca2+ ?>?Mg2+ and Cl??>?So4??>?No3??>?F? in both the sessions. WPI of prelockdown showed that about 100% water samples are of highly polluted. WPI of lockdown period showed that around 90.90% samples improved to ‘good quality’ and 9.10% of samples are of ‘moderately polluted.’ Hypothesis testing by ‘t’ test proved that there was a significant difference (ρ?=?0.05%) in values of each parameter between two periods. Null hypothesis was rejected and indicated the improvement of river water quality statistically. Spatial mapping using Arc GIS 10.4 interpolation (IDW) helps to understand spatial intensity of pollution load in two periods. This research study should be helpful for further management and spatial diagnosis of water resource of river Damodar.

  相似文献   
10.
ABSTRACT

Present paper represents the spatio-temporal variation of air quality and performances of geostatistical tools for the identification of pollutants zone in various districts of Assam (India). Geographic Information System (GIS) and geostatistical analysis were utilized to estimate the spatio-temporal variations (2015–2017) of gaseous and particulate air pollutants. Data of 23 fixed monitoring stations were collected from the Central Pollution Control Board (CPCB). It was observed that SO2 and NOx concentrations are the major pollutants to the deterioration of air quality in Assam State. Exploratory data analysis was considered for the determination of spatial and temporal patterns of air pollutants. Air Quality index (AQI) was calculated based on the air pollutants and particulate matter. Radial Basis Function (RBF) interpolation techniques were used to analyze the spatial and temporal variation of air quality in Assam. Cross-validation is applied to evaluate the accuracy of interpolation methods in terms of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nash–Sutcliffe Equation (NSE) and Accuracy Factor (ACFT). In 2015, the high value of AQI portrayed in the central and northeast of the state. In 2016, the central and entire east of the study area was recorded the highest value of AQI. In 2017, it was observed that mostly the central part of the state recorded the high value of AQI. The spatio-temporal variation trend of air pollutants provides sound scientific basis for its management and control. This information of air pollution congregation would be valuable for urban planners and decision architects to efficiently administer air quality for health and environmental purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号