首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   1篇
污染及防治   5篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can be used to obtain reliable oxygen demands in batch respirometric tests such as the HBOD test.  相似文献   
4.
Renewable algae biomass, Scenedesmus obliquus, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102mW·m^2 (951mW·m^3) at current generation of 276mA·m^-2. The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534mg · L^-1 for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other byproducts such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112Ω ) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm^-2.  相似文献   
5.
Changes in the characteristics of algae-derived organic matter (AOM) were examined upon the operation of a microbial fuel cell (MFC) using multiple analytical methods. Temporal variations in the UV absorption and fluorescence excitation–emission matrix of the AOM revealed that less condensed humic-like components and large-sized protein-like fluorescent compounds were preferentially decomposed over the period of electricity generation. They also showed that low UV-absorbing extracellular organic matters (EOM) were produced at the end of the operation. SEC chromatograms demonstrated that smaller-sized UV-absorbing components were initially decomposed, followed by the net production of EOM with an intermediate molecular weight. Fourier transform infrared (FT-IR) spectra showed that proteins and polysaccharides were the two most dominant structures of the AOM in the MFC. Two-dimensional correlation spectroscopy combined with FT-IR provided additional valuable information on the sequential changes of the AOM, which occurred in the order of proteins → acidic functional groups → polysaccharides → amino acids/proteins.  相似文献   
6.

High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号