排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease‐driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host–pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious‐disease systems. 相似文献
2.
Maria C. Dzul Philip M. Dixon Michael C. Quist Stephen J. Dinsmore Michael R. Bower Kevin P. Wilson D. Bailey Gaines 《Environmental monitoring and assessment》2013,185(1):405-414
We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey’s power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design. 相似文献
3.
Han-Shin Lee Jan E. Dickinson Jason KG Tan Wendy Nembhard Carol Bower 《黑龙江环境通报》2018,38(13):1004-1012
4.
Xinyi Lu Perry J. Williams Mevin B. Hooten James A. Powell Jamie N. Womble Michael R. Bower 《Environmetrics》2020,31(3)
Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long‐term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density‐regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska. 相似文献
5.
6.
7.
Bower J Savage KS Weinman B Barnett MO Hamilton WP Harper WF 《Environmental pollution (Barking, Essex : 1987)》2008,156(2):504-514
Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As such, we studied the influence of various parameters on Hg(II) sorption onto pyrite (pH, time, Hg(II) concentration), a potential subsurface reactive barrier. Batch sorption studies revealed that total Hg(II) removal increases with both pH and time. X-ray absorption spectroscopy analysis showed that a transformation in the coordination environment at low pH occurred during aging over 2 weeks, to form an ordered monolayer of monodentate Hg-Cl complexes on pyrite. In column studies packed with pure quartz sand, the transport of Hg(II) was significantly retarded by the presence of a thin pyrite-sand reactive barrier, although dissolved oxygen inhibited Hg(II) sorption onto pyrite in the column. 相似文献
8.
In this study, we examined the influence of the long-range transport of dust particles and air pollutants on the photochemistry of OH and NO3 on Jeju Island, Korea (33.17 degrees N, 126.10 degrees E) during the Asian-dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26. Average concentration levels of daytime OH and nighttime NO3 on Jeju Island during the ADS period were estimated to be about 1x10(6) and 2x10(8) moleculescm(-3) ( approximately 9 pptv), respectively. OH levels during the ADS period were lower than those during the non-Asian-dust-storm (NADS) period by a factor of 1.5. This was likely to result from higher CO levels and the significant loading of dust particles, reducing the photolysis frequencies of ozone. Decreases in NO3 levels during the ADS period was likely to be determined mainly by the enhancement of the N2O5 heterogeneous reaction on dust aerosol surfaces. Averaged over 24 h, the reaction between HO2 and NO was the most important source of OH during the study period, followed by ozone photolysis, which contributed more than 95% of the total source. The reactions with CO, NO2, and non-methane hydrocarbons (NMHCs) during the study period were major sinks for OH. The reaction of N2O5 on aerosol surfaces was a more important sink for nighttime NO3 during the ADS due to the significant loading of dust particles. The reaction of NO3 with NMHCs and the gas-phase reaction of N2O5 with water vapor were both significant loss mechanisms during the study period, especially during the NADS. However, dry deposition of these oxidized nitrogen species and a heterogeneous reaction of NO3 were of no importance. 相似文献
9.
Blair T. Bower 《The Environmentalist》1984,4(4):253-264
Summary This paper presents an overview of: (1) the institutional context of the environmental pollution sector of environmental quality management; (2) accomplishments and problems in some representative subsectors; and (3) prospects. The author describes levels of government within the US federal system and lists types of organizational structures, explains the division of responsibilities for managing environmental quality among legislative bodies/executive agencies, state and federal courts, and state public utility commission, and notes the significant role of nongovernmental environmental groups. In order to assess both the past performance and present status of environmental quality management in the United States, Bower cites some specific and generic problems in such subsectors as water quality, soil erosion, air quality, and hazardous wastes. He goes on to characterize recent approaches and their results using these observations as a basis for an appraisal of future prospects in the context of intermedia impacts and multiple modes of impact on various species. Remarks prepared for presentation at theColloque International, Les Politiques de l'Environnement Face à la Crise, Paris, 10–12 January, 1984. Blair T. Bower, a Registered Civil Engineer, is a Consultant in Residence at Resources For the Future in Washington, DC. He has worked extensively in the US and abroad on environmental quality management with such international organizations as the UN, WHO, OAS, and OECD. His current involvements include consultancies with the US National Oceans and Atmospheric Administration, Strategic Assessments Branch/Oceans Assessment Division; as Leader for Utilization of Coastal Water Problem Areas/Analyzing Biospheric Change Programme, International Federation of Institutes for Advances Study; and with the Office of Policy Analysis/US Environmental Protection Agency. An early supporter of integrated approaches to natural resource/environmental planning and management and to residuals disposal, Mr Bower is the author of many publications on a wide range of environmental topics and management options. 相似文献
10.
It is well established that wet deposition of sulphate in the UKhas fallen by a much smaller fraction than have emissions of sulphur dioxide. Dry deposition of sulphur has decreased in proportion to the decline in emissions. A number of suggestionshave been made which offer possible explanations for this non-linearity between emissions and wet deposition. In this paper amodel of the processing of sulphur dioxide by aqueous phase cloudchemistry in a cloudy boundary layer is presented. This work doesnot simulate all the details of the mechanisms by which sulphate is incorporated into precipitation. It does, however, explorethe non-linearity of this oxidation process. It is shown that theoxidation of sulphur dioxide, in these conditions, over the UK isdominated by oxidation by ozone. The rate of sulphate productionis then controlled by the availability of the one basic trace gasin the atmosphere ammonia. Using realistic concentrations of thereacting species this is found to simulate well the observed non-linearity. The model predicts that sulphate and sulphur dioxideconcentrations will be uncorrelated in the cloudy boundary layerbut that ammonium and sulphate will be well correlated. Fieldobservations at a cloudy site in Northern England are consistentwith these predictions. 相似文献