首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
安全科学   1篇
基础理论   1篇
污染及防治   9篇
社会与环境   1篇
  2013年   1篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
A simple approach to modeling microbial biomass in the rhizosphere   总被引:4,自引:0,他引:4  
Microorganisms make an important contribution to the degradation of contaminants in bioremediation as well as in phytoremediation. An accurate estimation of microbial concentrations in the soil would be valuable in predicting contaminant dissipation during various bioremediation processes. A simple modeling approach to quantify the microbial biomass in the rhizosphere was developed in this study. Experiments were conducted using field column lysimeters planted with Eastern gamagrass. The microbial biomass concentrations from the rhizosphere soil, bulk soil, and unplanted soil were monitored for six months using an incubation–fumigation method. The proposed model was applied to the field microbial biomass data and good correlation between simulated and experimental data was achieved. The results indicate that plants increase microbial concentrations in the soil by providing root exudates as growth substrates for microorganisms. Since plant roots are initially small and do not produce large quantities of exudates when first seeded, the addition of exogenous substrates may be needed to increase initial microbial concentrations at the start of phytoremediation projects.  相似文献   
2.
The gel barrier formation by a gelling liquid (Colloidal Silica) injection in an unsaturated porous medium is investigated by developing a mathematical model and conducting numerical simulations. Gelation process is initiated by adding electrolytes such as NaCl, and the gel phase consisting of cross-linked colloidal silica particles grows as the gelation process proceeds. The mathematical model describing the transport and gelation of Colloidal Silica (CS) is based on coupled mass balance equations for the gel mixture (the sol phase plus the gel phase), gel phase (cross-linked colloidal silica particles plus water captured between cross-linked particles), and colloidal silica particles (discrete and cross-linked) and NaCl in the sol (suspension of discrete colloidal silica particles in water) and gel phases. The solutions in terms of volumetric fraction of the gel phase yield the gel mixture viscosity via the dependency on the volumetric fraction of gel phase. This dependency is determined from a kinetic gelation model with time-normalized viscosity curves. The proposed model is verified by comparing experimentally and numerically determined hydraulic conductivities of gel-treated soil columns at different CS injection volumes. The numerical experiments indicate that an impermeable gel layer is formed within the time period twice the gel-point in a one-dimensional flow system. At the same normalized time corresponding to twice the gel-point, the CS solutions with lower NaCl concentrations result in further migration and poor performance in plugging the pore space. The viscosity computation proposed in this study is compared with another method available in the literature. It is observed that the other method estimates the viscosity at the mixing zone higher than the one proposed by the authors. The proposed model can simulate realistic injection scenarios with various combinations of operating parameters such as NaCl concentration and NaCl mixing time, and thus providing guidelines in performing this technology on site.  相似文献   
3.
A mathematical model for the transport of hydrophobic organic contaminants in an aquifer under simplistic riverbank filtration conditions is developed. The model considers a situation where contaminants are present together with dissolved organic matter (DOM) and bacteria. The aquifer is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid phase. An equilibrium approach is used to describe the interactions of contaminants with DOM, bacteria, and solid matrix. The model is composed of bacterial transport equation and contaminant transport equation. Numerical simulations are performed to examine the contaminant transport behavior in the presence of DOM and bacteria. The simulation results illustrate that contaminant transport is enhanced markedly in the presence of DOM and bacteria, and the impact of DOM on contaminant mobility is greater than that of bacteria under examined conditions. Sensitivity analysis demonstrates that the model is sensitive to changes of three lumped parameters: K+1 (total affinity of stationary solid phase to contaminants), K+2 (total affinity of DOM to contaminants), and K+3 (total affinity of bacteria to contaminants). In a situation where contaminants exist simultaneously with DOM and bacteria, contaminant transport is mainly affected by a ratio of K+1/K+2/K+3, which can vary with changes of equilibrium distribution coefficient of contaminants and/or colloidal concentrations. In riverbank filtration, the influence of DOM and bacteria on the transport behavior of contaminants should be accounted to accurately predict the contaminant mobility.  相似文献   
4.
A methodology to study the trichloroethylene (TCE) and dodecane removal in porous media by surfactant foams (SF) was presented by using etched-glass micromodels. The purpose of this work was to systematically evaluate the impact of various physicochemical factors such as gas fraction (GF), surfactant concentration, pore structure and nonaqueous phase liquid (NAPL) types on NAPL removal during SF flooding. The TCE displacement by SF was dependent on the gas fraction of SF. Low GFs (50% and 66%) were more efficient for TCE removal and sweep efficiencies than a high GF (85%). An increase in TCE removal was observed with increasing surfactant concentration at a fixed GF. TCE removal by SF flooding appeared to be dependent more to the value of Capillary number rather than to the concentration of surfactant solution. The effect of the pore heterogeneity was evaluated by employing two different types of micromodels. The Capillary number is an important parameter in the determination of sweep efficiency or gas saturation of SF in a nonhomogeneous porous medium. However, the TCE removal from a nonhomogeneous porous medium may not be associated with sweep efficiency. The initial configuration of residual TCE blobs in a nonhomogeneous porous medium would also be influential in displacing TCE. Sweep efficiencies and pressure responses of two NAPL systems (TCE and dodecane) were monitored to evaluate foam stability when the foam contacts the NAPLs. Stable foam contacting with TCE is implied, while it appears that dodecane cause the SF to collapse. All results indicate that the Capillary number (a ratio of viscous forces to capillary forces) is the most important parameter for TCE removal by SF flooding. Micromodel visualizations of water, surfactant and SF floods were showed and also discussed.  相似文献   
5.
Two measures of aggressivity of Australian passenger vehicles have been developed. The first measures the aggressivity to occupants of other cars. This type of aggressivity rating is based on two-car crashes between passenger vehicles and measures the injury risk each make/model in the collisions poses to the drivers of the other vehicles. The second measures aggressivity to unprotected road users. These aggressivity ratings reflect the threat of severe injury to pedestrians, bicyclists and motorcyclists by die make/model of vehicle colliding with them. This analysis was based on nearly 102,000 drivers involved in tow-away crashes with the makes/models which were the focus of the study and on nearly 22,000 injured pedestrians, bicyclists, and motorcyclists. The results suggest that crasbworthiness and aggressivity are two different aspects of a vehicle's safety performance, with good performance on one dimension not necessarily being associated with good performance on the other.  相似文献   
6.
In riverbank filtration, contaminant transport is affected by colloidal particles such as dissolved organic matter (DOM) and bacterial particles. In addition, the subsurface heterogeneity influences the behavior of contaminant transport in riverbank filtration. A mathematical model is developed to describe the contaminant transport in dual-porosity media in the presence of DOM and bacteria as mobile colloids. In the model development, a porous medium is divided into the mobile and immobile regions to consider the presence of ineffective micropores in physically heterogeneous riverbanks. We assume that the contaminant transport in the mobile region is controlled by the advection and dispersion while the contaminant transport in the immobile region occurs due to the molecular diffusion. The contaminant transfer between the mobile and immobile regions takes place by diffusive mass transfer. The mobile region is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a solid matrix. The complete set of governing equations is solved numerically with a fully implicit finite difference method. The model results show that in riverbank filtration, the contaminant can migrate further than expected due to the presence of DOM and bacteria. In addition, the contaminant mobility increases further in the presence of the immobile region in aquifers. A sensitivity analysis shows that in dual-porosity media, earlier breakthrough of the contaminant takes place as the volumetric fraction of the mobile region decreases. It is also demonstrated that as the contaminant mass transfer rate coefficient between the mobile and immobile regions increases, the contaminant concentration gradient between the two regions reverses at earlier pore volumes. The contaminant mass transfer coefficient between the mobile and immobile regions mainly controls the tailing effect of the contaminant breakthrough. The contaminant breakthrough curves are sensitive to changes in contaminant adsorption and desorption rate coefficients on DOM and bacteria. In situations where the contaminant is released in the presence of DOM and bacteria in dual-porosity media, the early breakthrough and tailing occur due to the colloidal facilitation and presence of immobile regions.  相似文献   
7.
The food processing sector in Vietnam plays a vital role in its economic development, but its rapid growth seems to go hand-in-hand with environmental deterioration. Several decades of applying the conventional end-of-pipe approach made clear that it only deals with treating the symptoms. It is necessary to combine technological (end-of-pipe) solutions to overcome urgent pollution problems with ways to prevent wastes from being generated or to reuse their valuable material. This article presents a methodology for analyzing the possibilities for waste prevention in food processing industry in Vietnam.  相似文献   
8.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   
9.
Stable colloidal particles can travel long distances in subsurface environments and carry particle-reactive contaminants with them to locations further than predicted by the conventional advective-dispersive transport equation. When such carriers exist in a saturated porous medium, the system can be idealized as consisting of three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. However, when colloids are present in an unsaturated porous medium, the system representation should include one more phase, i.e. the air phase. In the work reported, a mathematical model was developed to describe the transport and fate of the colloidal particles and a non-volatile contaminant in unsaturated porous media. The model is based on mass balance equations in a four-phase porous medium. Colloid mass transfer mechanisms among aqueous, solid matrix, and air phases, and contaminant mass transfer between aqueous and colloid phases are represented by kinetic expressions. Governing equations are non-dimensionalized and solved to investigate colloid and contaminant transport in an unsaturated porous medium. A sensitivity analysis of the transport model was utilized to assess the effects of several parameters on model behavior. The colloid transport model matches successfully with experimental data of Wan and Wilson. The presence of air-water interface retards the colloid transport significantly counterbalancing the facilitating effect of colloids. However, the retardation of contaminant transport by colloids is highly dependent on the properties of the contaminant and the colloidal surface.  相似文献   
10.
A contaminant transport model was developed to simulate the fate and transport of organic compounds such as TNT (2,4,6-trinitrotoluene), using the single-root system. Onions were planted for this system with 50-ml plastic tubes. Mass in the soil, soil solution, root and leaf was monitored using 14C-TNT. Model parameters were acquired from the experiments in the single-root system and were used to simulate total TNT concentration in soil, providing the average concentrations in the rhizosphere and bulk soil as well as root and leaf compartments. Because the existing RCF (root concentration factor) and TSCF (transpiration stream concentration factor) equations based on logKow (octanol-water partition coefficient) were not correlated to TNT uptake, a new term, root uptake rate (Rur), and a new Tscf equation, based on the experimental data, were introduced in the proposed model. The results from both modeling and experimental studies showed higher concentrations of TNT in the rhizosphere than in the bulk soil, because mass transported from the surrounding soil into the rhizosphere was higher than that by root uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号