首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   4篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Laboratory based studies on the fate of organic contaminants in soil typically requires the test compound(s) to be spiked into the test medium. Consequently, such studies are inherently dependent on the homogeneity of the contaminant within the spiked soil. Three blending methods were compared for the addition of a phenanthrene-transformer oil mixture into field-wet soil. Spiking homogeneity, reproducibility and artefacts were assessed based on dichloromethane and hydroxypropyl-beta-cyclodextrin chemical extractability, and bacterial mineralization. Spiking using a stainless-steel spoon, consistently produced good spike homogeneity as determined by sample oxidation, chemical extraction and mineralization, and was consistently more reliable than either the Waring blender or modified bench drill. Overall, neither transformer oil-concentration nor blending method influenced chemical extractability or mineralization of the PAH following 1 day equilibration. In general, spiking procedures require validation prior to use, as homogeneity cannot be assured.  相似文献   
2.
The aim of this study was to characterize the behaviour of a PAH-degrading bacterium to determine whether mineralization plateaus as a result of substrate removal, a decrease in microbial activity or nutrient availability in sterile soils over time. To investigate this, the mineralization of 14C-phenanthrene was measured until it plateaued; subsequently, additional 14C-phenanthrene, catabolic inocula or nutrients were introduced and mineralization was measured for a further 10 d. Cell numbers were also measured together with 14C-uptake into microbial biomass. Freshly added 14C-phenanthrene was rapidly metabolised by the microorganisms. Neither the addition of a catabolic inoculum nor nutrients affected the extent of 14C-phenanthrene mineralization. Cell numbers remained constant over time, with only a small amount of the 14C-activity incorporated into the microbial biomass. This study indicated that the termination of mineralization was due to the removal of available phenanthrene and not decreasing cellular activity or cell death. The mineralization values also correlated with 14C-phenanthrene extractability using beta-cyclodextrin.  相似文献   
3.
There is currently considerable scientific interest in finding a chemical technique capable of predicting bioavailability; non-exhaustive extraction techniques (NEETs) offer such potential. Hydroxypropyl-beta-cyclodextrin (HPCD), a NEET, is further validated through the investigation of concentration ranges, differing soil types, and the presence of co-contaminants. This is the first study to demonstrate the utility of the HPCD-extraction technique to predict the microbial availability to phenanthrene across a wide concentration range and independent of soil-contaminant contact time (123 d). The efficacy of the HPCD-extraction technique for the estimation of PAH microbial availability in soil is demonstrated in the presence of co-contaminants that have been aged for the duration of the experiment together in the soil. Desorption dynamics are compared in co-contaminant and single-PAH contaminated spiked soils to demonstrate the occurrence of competitive displacement. Overall, a single HPCD-extraction technique proved accurate and reproducible for the estimation of PAH bioavailability from soil.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号