首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
综合类   1篇
基础理论   1篇
污染及防治   3篇
评价与监测   2篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  1964年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   
2.
Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006–2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O3) was high indicating a potential for phytotoxicity. Ammonia (NH3) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH?<?5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type’s structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.  相似文献   
3.
Background, aim and scope

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.

Materials and methods

Drinking water samples were collected from different sampling points in the water treatment plant (WTP) from Gilau and the corresponding distribution system in Cluj-Napoca and also from Beclean, Dej and Jibou WTPs. The water samples were collected once a month from July 2006 to November 2007 and stored in 40-mL vials closed with Teflon lined screw caps. Water samples were preserved at 4°C until analysis after sodium thiosulfate (Na2S2O3) had been added to quench residual chlorine. All samples were analysed for THMs using headspace GC-ECD between 1 and 7 days after sampling. The sample (10 mL) was filled into 20-mL headspace vials and closed with a Teflon-lined screw cap. Thereafter, the samples were equilibrated in an oven at 60°C for 45 min. The headspace (1 mL) was then injected into the GC (Cyanopropylphenyl Polysiloxane column, 30 m × 53 mm, 3 μm film thickness, Thermo Finnigan, USA). The MDLs for THMs were determined from the standard deviation of eight standards at 1 μg/L. The MDLs for CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 0.3, 0.2, 0.3 and 0.6 μg/L, respectively. All kinetic laboratory studies were carried out only with water from the WTP Gilau. The experiments were conducted under two conditions: baseline conditions (pH 7, 21°C, 2.5 mg/L Cl2) to gain information about the change of the organic matter in the raw water and seasonally variable conditions to simulate the actual process at the treatment plant and the distribution system.

Results and discussion

This study shows that the current chlorination practice in the investigated plants complies with the THM drinking water standards of the EU. The THM concentrations in all samples taken in the four treatment plants and distributions systems were below the EU drinking water standard for TTHMs of 100 μg/L. Due to the low bromide levels in the raw waters, the main THM formed in the investigated plants is chloroform. It could also be seen that the THM levels were typically lower in water supplies with groundwater as their water resource. In one plant (Dej) with a pre-ozonation step, a significantly lower (50%) THM formation during post-chlorination was observed. Laboratory chlorination experiments revealed a good correlation between chloroform formation and the consumed chlorine dose. Also, these experiments allowed a semi-quantative prediction of the chloroform formation in the distribution system of Cluj-Napoca.

Conclusions

CHCl3 was the most important trihalomethane species observed after the chlorination of water in all of the sampled months. However, TTHM concentrations did not exceed the maximum permissible value of 100 μg/L (EU). The THM formation rates in the distribution system of Cluj-Napoca have a high seasonal variability. Kinetic laboratory experiments could be used to predict chloroform formation in the Cluj-Napoca distribution system. Furthermore, an empirical model allowed an estimation of the chloroform formation in the Gilau water treatment plant.

  相似文献   
4.

Background, aim and scope  

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.  相似文献   
5.
The influence of some climatic oscillations and sunspot number on river flows in Romania, Ukraine, and Moldova is verified by using standard wavelet analyses. The selected climate oscillations are Arctic Oscillation (AO), Antarctic Oscillation (AAO), East Atlantic Oscillation (EAO), East Atlantic/West Russia Oscillation (EAWRO), NINO3.4, North Atlantic Oscillation (NAO), Pacific/North America Oscillation (PNAO), Pacific Decadal Oscillation (PDO), Polar/Eurasia Oscillation (PEO), Scandinavian Oscillation (ScandO), Southern Oscillation (SO), and West Pacific Oscillation (WPO). Forty-five hydrological stations from an area of 45,000 km2 were used in order to discover the spatial evolution of the periodicities found in rivers. The wavelet analysis is novel for the rivers in the study area. There is an important difference between the periodicities found in mountain and plateau areas and those found in the plain area. There is a general downstream increase in the confidence level of the identified periods, even if the atmospheric precipitation has more relevant periodicities in the mountain area. The periodicities can be grouped into two compact groups: 1–16.5 and 27.8–55.6 years. The correlation matrix of the global wavelet spectrum (GWS) values indicates that NAO, EAWRO, PDO, and the sunspot number are the main factors that generate the periodicities in rivers. It is the first time when the influence of PDO on local rivers is proven. All river periodicities smaller than 16 years have a confidence level of 0.95 or above, as proven by the GWS analysis of the daily discharge data, and are caused by multiple external factors.  相似文献   
6.
For environmental control purposes, floating oil spills in harbours, off shore areas and their sources must often be identified. Pattern recognition, applied to JR spectrophotometric data (600-2000 cm m 1 range), and to chromatographic data ( n -alkanes) for the spill and various suspected sources such as oil and fuels from ships bunkers and harbour installations, can lead to definite conclusions; particularly after artificial weathering formula are used. The software application provides quick and accurate identification of the pollution source. The identification algorithm has a learning stage in which the user creates a minimal database. This database has a tree structure with classes (fuels, crude, etc.) and members representing samples from already known sources. A sample contains JR and chromatographic data and information of the originating source. A larger database means more knowledge, which conveys a better identification. When the origin of an unknown sample is searched for, the software looks for the best match through the database and displays the results in two lists; sorted by calculated similarity. One list displays the classes in which the unknown sample could be included and the other displays the possible sources. An extra check can be done by visual inspection of the overlapped graphics (unknown sample and each of the identified sources).  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号