首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   1篇
污染及防治   2篇
  2022年   1篇
  2018年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Metal releases from the Tri-State Mining District (TSMD) that is located in southwestern Missouri, southeastern Kansas, and northeastern Oklahoma, have contaminated floodplain soils within the Neosho and Spring river watersheds of the Grand Lake watershed. Since the Oklahoma portion of the watershed lies within ten tribal jurisdictions, the potential accumulation of metals within plant species that are gathered and consumed by tribal members, as well as the resulting metal exposure risks to tribal human health, was a warranted concern for further investigation. Within this study, a total of 36 plant species that are commonly consumed by tribes were collected from floodplain areas that were previously demonstrated to have elevated soil metal concentrations relative to reference sites. A significant, positive correlation was shown for metal concentrations in plant tissues versus soil (n = 258; Cd: R = 0.72, p = 0.00; Pb: R = 0.52, p = 0.00; and Zn: R = 0.70, p = 0.00). Additionally, a significant difference in metal concentration distributions existed between reference and impacted plant samples (n = 210, p = 0.00 for all metals). These results proved that floodplain soils are a major contamination pathway for metal accumulation within plants, and the source of metal contamination is the result of mining releases from the TSMD. Metal accumulation within plants was found to vary according to specific metal and plant species. The lowest dietary exposure out of all plant organs sampled were associated with fruit, whereas the highest was associated with roots, stem/leaves, and low-lying leafy greens. Metals in plants were compared to weekly dietary intake limits established by the Joint FAO/WHO Expert Committee on Food Additives. Based on specific serving sizes established within this study for tribal children and adults, many plant species had sufficient concentrations to warrant tribal consumption restrictions within the floodplains of Elm Creek, Grand Lake, Lost Creek, Spring River, and Tar Creek. Importantly, these results highlighted the necessity for the issuance of plant consumption advisories for tribal communities in the watershed. A consumption restriction guide on the number of allowable servings of each species per week at specific streams was developed within this study for tribal children and adults. Results also demonstrated that soil metal concentrations do not need to be exceptionally elevated relative to reference sites in order for plants to accumulate sufficient metal concentrations to exceed dietary limits for one serving. Therefore, the exposure risk associated with the consumption of plants cannot be accurately predicted solely from metal concentrations within soils, but must be based on metal concentrations within specific plant tissues on a site-by-site basis. A weekly consumption scenario was created within this study in order to better understand the potential metal dietary exposures to child and adult tribal members who consume multiple servings of multiple plant species per day, as well as benthic invertebrates and fish from the watershed. These findings demonstrated that plants pose a greater consumption exposure risk for tribal members than benthic invertebrates or fish. Therefore, without the consideration of exposure risks associated with the consumption of plants within future human health risk assessments, tribal health risks will be severely underestimated.  相似文献   
2.
Environmental Science and Pollution Research - Rapid progress of industrial development, urbanization and traffic has caused air quality reduction that negatively affects human health and...  相似文献   
3.
Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C3- and C4-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene  toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1 mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1 mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号