首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
基础理论   2篇
污染及防治   2篇
评价与监测   1篇
社会与环境   1篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Johansson V  Ranius T  Snäll T 《Ecology》2012,93(2):235-241
The colonization-extinction dynamics of many species are affected by the dynamics of their patches. For increasing our understanding of the metapopulation dynamics of sessile species confined to dynamic patches, we fitted a Bayesian incidence function model extended for dynamic landscapes to snapshot data on five epiphytic lichens among 2083 mapped oaks (dynamic patches). We estimate the age at which trees become suitable patches for different species, which defines their niche breadth (number of suitable trees). We show that the colonization rates were generally low, but increased with increasing connectivity in accordance with metapopulation theory. The rates were related to species traits, and we show, for the first time, that they are higher for species with wide niches and small dispersal propagules than for species with narrow niches or large propagules. We also show frequent long-distance dispersal in epiphytes by quantifying the relative importance of local dispersal and background deposition of dispersal propagules. Local stochastic extinctions from intact trees were negligible in all study species, and thus, the extinction rate is set by the rate of patch destruction (tree fall). These findings mean that epiphyte metapopulations may have slow colonization-extinction dynamics that are explained by connectivity, species traits, and patch dynamics.  相似文献   
2.
3.
Within the emerging concept of industrial ecology (IE) that belongs to the research and practical field of sustainable development (SD), the natural ecosystem evolution over time has been described as a metaphor that presents systems of type I, type II and type III ecology. Type I describes a situation when there was little life on earth and plenty of resources. In type II, the ecosystem starts to develop material cycles and energy cascades between organisms and species due to increasing amount of life and emerging scarcity of resources. In type III, the mature ecosystem stage, the system actors have developed nearly completely cyclic flows of matter, energy cascades and diverse interdependencies between them. This paper uses the metaphor in the three systems to develop practical models of type I, II and III industrial ecosystems for an economic system of heating energy and its evolution over time. First, the physical flows of matter and energy are described by using two contrasting case system characteristics, 'throughput' and 'roundput'. Throughput means linear material and energy flows. Roundput means material cycles, energy cascades and sustainable use of renewables, i.e., ecosystem type III. Second, the more structural and organisational features are considered with the characteristic of 'diversity' meaning diversity in resources, human involvement and economic actors and technology used. The case system development over time shown with our practical model of type I–III is radically different from the ecosystem evolution as described in the literature on the industrial ecosystem metaphor of type I–III. This conclusion as a research result, however, is tentative, because of the fuzzy and vague meaning assigned to a metaphor and its confusion with a practical model of industrial development in the industrial ecology literature.  相似文献   
4.
空气中挥发性有机物污染状况及健康风险评价   总被引:11,自引:0,他引:11  
为了了解南京某县空气中挥发性有机污染物(VOCs)的污染状况,采用苏码罐采样-气相色谱-质谱法分析了该县不同功能区空气中的VOCs,探讨了其可能来源并采用国际公认的评价模型,对空气中的VOCs进行了健康风险评价。  相似文献   
5.
6.
Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01650-7.  相似文献   
7.
Assessing ecological sustainability involves monitoring of indicators and comparison of their states with performance targets that are deemed sustainable. First, a normative model was developed centered on evidence-based knowledge about (a) forest composition, structure, and function at multiple scales, and (b) performance targets derived by quantifying the habitat amount in naturally dynamic forests, and as required for presence of populations of specialized focal species. Second, we compared the Forest Stewardship Council (FSC) certification standards’ ecological indicators from 1998 and 2010 in Sweden to the normative model using a Specific, Measurable, Accurate, Realistic, and Timebound (SMART) indicator approach. Indicator variables and targets for riparian and aquatic ecosystems were clearly under-represented compared to terrestrial ones. FSC’s ecological indicators expanded over time from composition and structure towards function, and from finer to coarser spatial scales. However, SMART indicators were few. Moreover, they poorly reflected quantitative evidence-based knowledge, a consequence of the fact that forest certification mirrors the outcome of a complex social negotiation process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号