首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   3篇
环保管理   1篇
污染及防治   2篇
社会与环境   1篇
  2016年   1篇
  2009年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

Although recent expansions in hydraulic fracking operations across the United States have led to greater news coverage and attention from the public, overall understanding remains fairly low. For some, relevant social identities, including environmental or political, may provide a short cut to becoming informed about fracking, or to determining what they believe about it and how that influences their positions on fracking policies. Social identity influence frameworks provide an approach to understanding the relationships between belief and identity, which this study investigates through its affiliational and attitudinal components. National survey data are used to model pathways from environmental and political identities to beliefs about risks associated with fracking. Environmental attitudes significantly predicted belief that fracking has health risks, and mediated a relationship from environmental group affiliation, but environmental information was not significant. Ideology had direct and indirect effects, through partisan media use, while partisanship had direct effects on beliefs about environmental risks.  相似文献   
2.
Duckweed species are promising macrophytes for use in sustainable wastewater treatment due to their rapid growth, ease of harvest, and feed potential as a protein source. This paper reviews growth rates of different duckweed species on wastewater and ammonia toxicity to duckweed and summarizes insights into the mechanism of organic matter and nutrient removal. Results were gained from laboratory experiments in small, shallow, duckweed-covered semicontinuous batch systems. Growth rates on different types of wastewater vary considerably among different species. Ammonia is toxic for duckweed in both the ionized and un-ionized forms. Duckweed, however, can be used to treat wastewater containing very high total ammonia concentrations as long as certain pH levels are not exceeded. The degradation of organic material is enhanced by duckweed through both additional oxygen supply and additional surface for bacterial growth. The duckweed mat with attached bacteria and algae is, independent of the loading rates, responsible for three-quarters of the total nitrogen (N) and phosphorus (P) loss in very shallow systems. Based on our results we suggest that full-scale pilot plants with duckweed should be shallower than the range encountered in the literature. A harvesting schedule that allows doubling times of 2 to 3.5 d, maintenance of a full coverage, and plug flow conditions are recommended.  相似文献   
3.
The Army National Guard initiated an Innovative Technology Evaluation (ITE) Program in March 2000 to study potential remedial technologies for the cleanup of explosives‐contaminated soil and groundwater at the Camp Edwards site on the Massachusetts Military Reservation. The soil technologies chosen for the ITE program were: soil washing, chemical oxidation, chemical reduction, thermal desorption/destruction (LTTD), bioslurry, composting, and solid phase bioremediation. The technologies were evaluated based on their ability to treat both washed and untreated soil. A major factor considered was the ability to degrade explosives, such as RDX, found in particulate form in the soils. The heterogeneous nature of explosives in soils dictates that the preferred technology must be able to treat explosives in all forms, including the particulate form. Groundwater remediation technologies considered include: in situ cometabolic reduction, two forms of in situ chemical oxidation, Fenton‐like oxidation and potassium permanganate. This article presents the results of each of the remedial technologies evaluated and discusses which technologies met the established ITE performance goals. © 2003 Wiley Periodicals, Inc.  相似文献   
4.
Soil samples from the area of Hanau (Hessen, Germany) were analyzed for anthropogenic platinum-group elements (PGE). The results confirm the existence of two different sources for anthropogenic PGE: 1. automotive catalysts, and 2. PGE-processing plants. Both sources emit qualitatively and quantitatively different PGE spectra and PGE interelemental ratios (especially the Pt/Rh ratio). Elevated PGE values which are due to automotive catalysts are restricted to a narrow-range along roadside soil, whereas those due to PGE-processing plants display a large-area dispersion. The emitted PGE-containing particles in the case of automotive catalysts are subject to transport by wind and water, whereas those from PGE-processing plants are preferably transported by wind. This points to a different aerodynamic particle size. Pt, Pd, and Rh concentrations along motorways are dependent on the amount of traffic and the driving characteristics.  相似文献   
5.
The treatment of groundwater contaminated with low concentrations of methyl tertiary butyl ether (MTBE) is of nationwide concern. Many treatment techniques include removing MTBE vapors from groundwater, resulting in airstreams that require treatment. One method used for air‐phase MTBE treatment is biofiltration. In a biofilter, the vapors pass through a reactor that contains MTBE‐biodegrading organisms attached to a porous media. This article reports the results of a biofiltration study to treat air contaminated with MTBE at concentrations of 0.2 to 0.33 mg/l, concentrations frequently encountered in the field. The results indicate that MTBE removal at these low concentrations is not as efficient as removals seen at higher concentrations. Activated carbon was shown to be a superior biofiltration medium, compared with media that do not adsorb MTBE vapors. Activated carbon was especially helpful in treatment shock loads of MTBE. © 2002 Wiley Periodicals, Inc.  相似文献   
6.
Natural attenuation holds great promise as a cost‐effective means of remedying groundwater contamination at petroleum spill sites: this is particularly true at sites with sufficient background concentrations of alternate electron acceptors (nitrate and/or sulfate). The study reported in this article compared the results of a new Environmental Protection Agency (EPA) numerical model (BIOPLUME III) with an updated EPA analytical model (BIOSCREEN Version 1.4) used to predict natural attenuation at an underground fuel spill site in Oklahoma. High background sulfate concentrations were shown to result in unrealistic predictions from both BIOSCREEN and BIOPLUME III. BIOSCREEN could be easily used with a data set not significantly enlarged from that used in a routine leaking fuel tank investigation. BIOPLUME III was much more difficult to use and did not yield reliable results. Results of this study indicate that the additional complexity of the BIOPLUME III model is not justified for simple sites.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号