首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   15篇
安全科学   23篇
废物处理   10篇
环保管理   73篇
综合类   39篇
基础理论   126篇
环境理论   2篇
污染及防治   89篇
评价与监测   17篇
社会与环境   12篇
灾害及防治   8篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   7篇
  2019年   7篇
  2018年   18篇
  2017年   4篇
  2016年   25篇
  2015年   11篇
  2014年   17篇
  2013年   35篇
  2012年   16篇
  2011年   29篇
  2010年   22篇
  2009年   19篇
  2008年   18篇
  2007年   19篇
  2006年   13篇
  2005年   11篇
  2004年   15篇
  2003年   16篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1969年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
1.
As part of a programme to characterize floating anthropogenic debris in the aquatic environment, the US Environmental Protection Agency (EPA) conducted 18 field surveys in the harbours of major metropolitan cities of the east, west, and Gulf coasts of the United States and the Mid-Atlantic Bight. the surveys were designed to provide information on the types, relative amounts, and distributions of aquatic debris in different geographic regions of the United States. Neuston nets (0.33 mm mesh) were used to collect surface debris during outgoing tides on two or three consecutive days in selected areas of each city. After each net tow, the debris, which ranged in size from small resin pellets to large plastic sheeting pieces, was identified, categorized, and counted. the data are being used to qualitatively characterize aquatic debris in coastal metropolitan areas, to examine potential regional variations, and to tentatively identify potential sources.  相似文献   
2.
Daytime sampling of mangrove and seagrass (Halophila/Halodule community) habitats every 7 wk at Alligator Creek, Queensland, Australia, over a period of 13 mo (February 1985–February 1986) using two types of seine net, revealed distinct mangrove and seagrass fish and crustacean faunas. Total abundance of fish and relative abundance of small and large fish also varied between habitats and seasonally. Post-larval, juvenile and small adult fish captured with a small seine-net (3 mm mesh) were significantly more abundant (4 to 10 times) in the mangrove habitat throughout the 13 mo of sampling. Mangrove fish abundance showed significant seasonality, greatest catches being recorded in the warm, wet-season months of the year. Relative abundances of larger fish (captured in a seine net with 18 mm mesh) in the two habitats varied throughout the year, but did not show a seasonal pattern. At the same site, small crustaceans were significantly more abundant in the mangroves in all but one dryseason sample. Similar comparisons for three riverine sites, sampled less frequently, in the dry and wet seasons of 1985 and 1986, respectively, showed that in general mangrove habitats had significantly more fish per sample, although the relative abundance of fish in mangroves and other habitats changed with season. Crustacean catches showed a similar pattern, except that densities among sites changed with season. Fish and crustacean abundance in mangroves varied among sites, indicating that estuaries differ in their nursery-ground value. The juveniles of two commercially important penaeid prawn species (Penaeus merguiensis and Metapenaeus ensis) were amongst the top three species of crustaceans captured in the study, and both were significantly more abundant in the mangrove habitat. By contrast, mangroves could not be considered an important nursery for juveniles of commercially important fish species in northern Australia. However, based on comparisons of fish catches in other regions, the results of the present study indicate the importance of mangroves as nursery sites for commercially exploited fish stocks elsewhere in South-East Asia. Contribution No. 378 from the Australian Institute of Marine Science  相似文献   
3.
Robertson  A. I.  Daniel  P. A.  Dixon  P. 《Marine Biology》1991,111(1):147-155
In April, July and August 1989 and February 1990, the delta region of the Fly River was surveyed to establish the aerial extent of mangrove forests, their species composition, tree densities and basal areas, and potential net primary production. Mangrove forests cover 87 400 ha, mainly on islands within the delta. Twentynine mangrove plant species were recorded, but there were only three major forest types in the delta.Rhizophora apiculata-Bruguiera parviflora forests (hereafterRhizophora-Bruguiera forests) predominated in regions where river water salinities were >10. These forests covered 31 500 ha and had mean total tree densities and basal areas of 2027 stems ha–1 and 21 m2 ha–1, respectively. Forests of the palmNypa fruticans (hereafterNypa forests) covered 38 400 ha, mainly in regions where river salinities were ~1 to 10, and had mean total densities and basal areas of 4431 stems ha–1 and 38 m2 ha–1, respectively. Forests dominated byAvicennia marina and/orSonneratia lanceolata (hereafterAvicennia-Sonneratia forests) predominated on accreting banks of sediment and covered 17 500 ha. In very low-salinity (< 1) regions there are large monospecific stands ofS. lanceolata. Mean total densities and basal areas forAvicennia-Sonneratia forests were 7036 stems ha–1 and 22 m2 ha–1, respectively. Mean net primary productivity (kg C ha–1 d–1) was estimated to be 26.7, 27.1 and 19.0 forRhizophora-Bruguiera, Nypa andAvicennia-Sonneratia forests, respectively. Total daily net primary production by all mangrove forests was estimated at 2214 t carbon. Using assumptions based on work in tropical Australia, it was estimated that ~678 t carbon (or 31% of primary production) were exported daily from mangrove forests to the waters of the delta.Contribution No. 550 from the Australian Institute of Marine Science  相似文献   
4.
5.
Variability in the level of expression of very long chain fatty acids (VLCFAs) is documented in cultured chorionic villus (CV) cells derived from two fetuses, one at risk for an unusual peroxisomal fatty acid β-oxidation defect, and the other at risk for the X-linked form of adrenoleucodystrophy (ALD). Cells from early subcultures of chorionic cells from both cases gave normal values for VLCFA ratios. The results for the fetus at risk for the β-oxidation defect were interpreted to indicate that the fetus was not affected; however, at birth, the infant was clinically and biochemically affected. In the case of the fetus at risk for X-linked ALD, although VLCFAs were normal in subculture 1, the levels of these fatty acids increased dramatically in subculture 3, suggesting an abnormal fetus. Termination of the pregnancy and subsequent biochemical and morphological follow-up confirmed that the fetus was indeed affected by ALD.  相似文献   
6.
A fish‐consumption advisory is currently in effect in a seven‐mile stretch of the Grasse River in Massena, New York, due to elevated levels of PCBs in fish tissue. One remedial approach that is being evaluated to reduce the PCB levels in fish from the river is in situ capping. An in‐river pilot study was conducted in the summer of 2001 to assess the feasibility of capping PCB‐containing sediments of the river. The study consisted of the construction of a subaqueous cap in a seven‐acre portion of the river using various combinations of capping materials and placement techniques. Optimal results were achieved with a 1:1 sand/topsoil mix released from a clamshell bucket either just above or several feet below the water surface. A longer‐term monitoring program of the capped area commenced in 2002. Results of this monitoring indicated: 1) the in‐place cap has remained intact since installation; 2) no evidence of PCB migration into and through the cap; 3) groundwater advection through the cap is not an important PCB transport mechanism; and 4) macroinvertebrate colonization of the in‐place cap is continuing. Additional follow‐up monitoring in the spring of 2003 indicated that a significant portion of the cap and, in some cases, the underlying sediments had been disturbed in the period following the conclusion of the 2002 monitoring work. An analysis of river conditions in the spring of 2003 indicated that a significant ice jam had formed in the river directly over the capping pilot study area, and that the resulting increase in river velocities and turbulence in the area resulted in the movement of both cap materials and the underlying sediments. The pilot cap was not designed to address ice jam–related forces on the cap, as the occurrence of ice jams in this section of the river had not been known prior to the observations conducted in the spring of 2003. These findings will preclude implementation of the longer‐term monitoring program that had been envisioned for the pilot study. The data collected immediately after cap construction in 2001 and through the first year of monitoring in 2002 serve as the basis for the conclusions presented in this article. It should be recognized that, based on the observation made in the spring of 2003, some of these conclusions are no longer valid for the pilot study area.The occurrence of ice jams in the lower Grasse River and their importance on sediments and PCBs within the system are currently under investigation. © 2003 Wiley Periodicals, Inc.  相似文献   
7.
Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long‐term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry‐over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white‐nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free‐ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry‐over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations.  相似文献   
8.
9.
Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4 %) of surface water, 59/64 (92 %) of wastewater inlet and 55/59 (93 %) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.  相似文献   
10.
Various approaches are used to subdivide large areas into regions containing streams that have similar reference or background water quality and that respond similarly to different factors. For many applications, such as establishing reference conditions, it is preferable to use physical characteristics that are not affected by human activities to delineate these regions. However, most approaches, such as ecoregion classifications, rely on land use to delineate regions or have difficulties compensating for the effects of land use. Land use not only directly affects water quality, but it is often correlated with the factors used to define the regions. In this article, we describe modifications to SPARTA (spatial regression-tree analysis), a relatively new approach applied to water-quality and environmental characteristic data to delineate zones with similar factors affecting water quality. In this modified approach, land-use-adjusted (residualized) water quality and environmental characteristics are computed for each site. Regression-tree analysis is applied to the residualized data to determine the most statistically important environmental characteristics describing the distribution of a specific water-quality constituent. Geographic information for small basins throughout the study area is then used to subdivide the area into relatively homogeneous environmental water-quality zones. For each zone, commonly used approaches are subsequently used to define its reference water quality and how its water quality responds to changes in land use. SPARTA is used to delineate zones of similar reference concentrations of total phosphorus and suspended sediment throughout the upper Midwestern part of the United States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号