首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   1篇
污染及防治   6篇
社会与环境   1篇
  2018年   1篇
  2014年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Bioenergy to save the world   总被引:1,自引:0,他引:1  
BACKGROUND AND AIM: Following to the 2006 climate summit, the European Union formally set the goal of limiting global warming to 2 degrees Celsius. But even today, climate change is already affecting people and ecosystems. Examples are melting glaciers and polar ice, reports about thawing permafrost areas, dying coral reefs, rising sea levels, changing ecosystems and fatal heat periods. Within the last 150 years, CO2 levels rose from 280 ppm to currently over 400 ppm. If we continue on our present course, CO2 equivalent levels could approach 600 ppm by 2035. However, if CO2 levels are not stabilized at the 450-550 ppm level, the consequences could be quite severe. Hence, if we do not act now, the opportunity to stabilise at even 550 ppm is likely to slip away. Long-term stabilisation will require that CO2 emissions ultimately be reduced to more than 80% below current levels. This will require major changes in how we operate. RESULTS: Reducing greenhouse gases from burning fossil fuels seems to be the most promising approach to counterbalance the dramatic climate changes we would face in the near future. It is clear since the Kyoto protocol that the availability of fossil carbon resources will not match our future requirements. Furthermore, the distribution of fossil carbon sources around the globe makes them an even less reliable source in the future. We propose to screen crop and non-crop species for high biomass production and good survival on marginal soils as well as to produce mutants from the same species by chemical mutagenesis or related methods. These plants, when grown in adequate crop rotation, will provide local farming communities with biomass for the fermentation in decentralized biogas reactors, and the resulting nitrogen rich manure can be distributed on the fields to improve the soil. DISCUSSION: Such an approach will open new economic perspectives to small farmers, and provide a clever way to self sufficient and sustainable rural development. Together with the present economic reality, where energy and raw material prices have drastically increased over the last decade, they necessitate the development and the establishment of alternative concepts. CONCLUSIONS: Biotechnology is available to apply fast breeding to promising energy plant species. It is important that our valuable arable land is preserved for agriculture. The opportunity to switch from low-income agriculture to biogas production may convince small farmers to adhere to their business and by that preserve the identity of rural communities. PERSPECTIVES: Overall, biogas is a promising alternative for the future, because its resource base is widely available, and single farms or small local cooperatives might start biogas plant operation.  相似文献   
3.
Environmental Science and Pollution Research - The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu...  相似文献   
4.
In the middle of Europe, the Alps form a geographical and meteorological trap for atmospheric pollutants including volatile and semi-volatile organic compounds emitted in the surrounding lowlands. This is due to their barrier effects, high precipitation rates, and low ambient temperatures. Also the pollutants emitted in the cities inside the Alps spread in the region depending on orographic and meteorological conditions. Although a number of studies on the distribution and effect of pollutants in the Alps has been published, comprehensive information on potential hazards, and ways to improve this sensible environment are lacking. This opinion paper is the result of a discussion during the Winterseminar of the AlpsBioCluster project in Munich. It summarizes the current literature and presents some case studies on local pollution sources in the Alps, and the possibility of using biomonitoring techniques to assess critical pollution loads and distributions.  相似文献   
5.
A vaulted basement found at the rabbi's residential house which was oriented according to the requirements of a mikveh has created a controversy in the architectural history of the Ichenhausen Synagogue (Germany). The rabbi's residential house is known to have been built in 1781 during the replacement of the old Synagogue that had existed since 1687. However, the architectural documents concerning the residential house did not contain any information about either the presence or the construction of the mikveh in the basement. Three bricks collected from the northern, eastern and southern walls of the vaulted basement of the rabbi's residence were dated using the thermoluminescence method to find out if the mikveh belongs to the old Synagogue or was built during the construction of the residence. The archaeological dose was assessed using multi-aliquot regenerative and additive dose techniques using quartz extracted from bricks. The age calculations were based on the assessment of annual dose rate in quartz by taking into account the possible variations of water content in bricks. The TL dates of the bricks were found to vary between 1797+/-11 and 1772+/-16 for dry and water saturated environments, respectively. The TL results ruled out the possibility that the walls of the mikveh belong to the former Synagogue.  相似文献   
6.

Background, aim, and scope

The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass.

Conclusions and perspectives

It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).  相似文献   
7.
The response of tobacco plants (Nicotiana tabacum L.)--non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L.--to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 microM CdCl(2) resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 microM CdCl(2) led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants.  相似文献   
8.
Background, aim, and scope  Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. Main features  The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Materials and methods  Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. Results and discussion  We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Conclusions  Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号