首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
污染及防治   8篇
评价与监测   1篇
社会与环境   3篇
  2017年   2篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.

Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1–100 g l?1), maximal protease production was observed at 30 g l?1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l?1), CaCl2, or MgCl2 (10 mmol l?1) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH4Cl (1 g l?1) resulted in less apparent negative effects on protease production, whereas peptone (2 g l?1) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH4Cl (0.5–4.5 g l?1) on protease production and feather degradation, FB30 supplementation with peptone and NH4Cl (0.5–1.1 g l?1) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

  相似文献   
2.
An experiment was conducted to distinguish priming effects from the effects of phytoremediation of a creosote-polluted soil. The concentration of 13 polycyclic aromatic hydrocarbons (PAHs), and their combined soil toxicity (using four bioassays), was determined on recently excavated, homogenized soil and on such soil subjected to a time-course phytoremediation experiment with lucerne. The results showed a high priming effect, with minor positive and synergistic effects of planting and fertilization on PAH degradation rates. At the end of the experiment, PAH degradation reached 86% of the initial 519 mg PAHs kg(-1). Two of the four toxicity tests (bioluminescence inhibition and ostracod growth inhibition) corroborated the chemical data for residual PAHs, and indicated a significant reduction in soil toxicity. We conclude that priming effects can easily surpass treatment effects, and that an unintentional pre-incubation that ignores these effects can jeopardize the full quantitative assessment of in situ bioremediation of contaminated soil.  相似文献   
3.
This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies.  相似文献   
4.
Background Phytoremediation is a promising technology for the cleanup of polluted environments. The technology has so far been used mainly to remove toxic heavy metals from contaminated soil, but there is a growing interest in broadening its applications to remove/degrade organic pollutants in the environment. Both plants and soil microorganisms have certain limitations with respect to their individual abilities to remove/breakdown organic compounds. A synergistic action by both rhizosphere microorganisms that leads to increased availability of hydrophobic compounds, and plants that leads to their removal and/or degradation, may overcome many of the limitations, and thus provide a useful basis for enhancing remediation of contaminated environments.Main Features The review of literature presented in this article provides an insight to the nature of plant-microbial interactions in the rhizosphere, with a focus on those processes that are relevant to the breakdown and/or removal of organic pollutants. Due consideration has been given to identify opportunities for utilising the plant-microbial synergy in the rhizosphere to enhance remediation of contaminated environments.Results and Discussion The literature review has highlighted the existence of a synergistic interaction between plants and microbial communities in the rhizosphere. This interaction benefits both microorganisms through provision of nutrients by root exudates, and plants through enhanced nutrient uptake and reduced toxicity of soil contaminants. The ability of the plant-microbial interaction to tackle some of the most recalcitrant organic chemicals is of particular interest with regard to enhancing and extending the scope of remediation technologies.Conclusions Plant-microbial interactions in the rhizosphere offer very useful means for remediating environments contaminated with recalcitrant organic compounds.Outlook A better knowledge of plant-microbial interactions will provide a basis for improving the efficacy of biological remediations. Further research is, however, needed to investigate different feedback mechanisms that select and regulate microbial activity in the rhizosphere.  相似文献   
5.
Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants   总被引:2,自引:0,他引:2  
Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies.  相似文献   
6.
A method for determination of the climate gases CH4, CO2 and N2O in air samples and soil atmosphere was developed using GC-MS. The method uses straightforward gas chromatography (separation of the gases) with a mass spectrometric detector in single ion mode (specific determination). The gases were determined with high sensitivity and high sample throughput (18 samples h(-1)). The LOD (3sigma) for the gases were 0.10 micro L L(-1) for CH4, 20 microL L(-1) for CO2 and 0.02 microL L(-1) for N2O. The linear range (R2 = 0.999) was up to 500 microL L(-1) for CH4, 4000 microL L(-1) for CO2 and 80 microL L(-1) for N2O. The samples were collected in 10 mL vials and a 5 microL aliquot was injected on column. The method was tested against certified gas references, the analytical data gave an accuracy within +/-5% and a precision of +/-3%. The presence of < or = 10% by volume of C2H2 (often used experimentally to prevent N2 formation from N2O) did not interfere with detection for the targeted trace gases.  相似文献   
7.
The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO2 byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO2 byproducts showed aggregation of particles up to 700 μm with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO2 byproducts did not induce cytotoxicity on cœlomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms.  相似文献   
8.
A batch experiment was conducted to compare PAH degradation in a polluted river sediment under aerobic and anaerobic conditions, and to investigate whether input of fresh organic material (cellulose) could enhance such degradation. All measurements were checked against abiotic control treatments to exclude artifacts of sample preparation and non-biological processes like aging. Three- and four-ring PAHs could be degraded by the indigenous microbial community under aerobic conditions, but anaerobic metabolism based on iron and sulphate reduction was not coupled with PAH degradation of even the simplest 3-ring compounds like phenanthrene. Cellulose addition stimulated both aerobic and anaerobic respiration, but had no effect on PAH dissipation. We conclude that natural attenuation of PAHs in polluted river sediments under anaerobic conditions is exceedingly slow. Dredging and biodegradation on land under aerobic conditions would be required to safely remediate and restore polluted sites.  相似文献   
9.
Titanium dioxide nanoparticles seem to have a low toxicity to terrestrial organisms, though few studies are published in this area. TiO(2) used in sunscreens are nanocomposites where TiO(2) has been coated with magnesium, silica or alumina, as well as amphiphilic organics like polydimethyl siloxane (PDMS), and these coatings are modified by ageing. We assessed the ecotoxicity and propensity for bioaccumulation of an aged TiO(2) nanocomposite used in sunscreen cosmetics, and its potential effect on the frequency of apoptosis in different earthworm tissues. The earthworm Lumbricus terrestris was exposed to the TiO(2) nanocomposite for 7 days in water or 2-8 weeks in soil with the nanocomposite mixed either into food or soil at concentrations ranging from 0 to 100 mg kg(-1). Apoptosis was then measured by immunohistochemistry and Ti localized by XRF microscopy. Results showed no mortality, but an enhanced apoptotic frequency which was higher in the cuticule, intestinal epithelium and chloragogenous tissue than in the longitudinal and circular musculature. TiO(2) nanoparticles did not seem to cross the intestinal epithelium/chloragogenous matrix barrier to enter the coelomic liquid, or the cuticule barrier to reach the muscular layers. No bioaccumulation of TiO(2) nanocomposites could thus be observed.  相似文献   
10.

Two types of nano-scale zero-valent iron (nZVI-B prepared by borohydride reduction and nZVI-T produced by thermal reduction of iron oxide nanoparticles in H2) and a micro-scale ZVI (mZVI) were compared for PCB degradation efficiency in water and soil. In addition, the ecotoxicity of nZVI-B and nZVI-T particles in treated water and soil was evaluated on bacteria, plants, earthworms, and ostracods. All types of nZVI and mZVI were highly efficient in degradation of PCBs in water, but had little degradation effect on PCBs in soil. Although nZVI-B had a significant negative impact on the organisms tested, treatment with nZVI-T showed no negative effect, probably due to surface passivation through controlled oxidation of the nanoparticles.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号