首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
环保管理   1篇
基础理论   7篇
污染及防治   1篇
  2016年   2篇
  2012年   1篇
  2008年   2篇
  2006年   2篇
  2000年   1篇
  1983年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The zinc content of intestinal epithelial cells in human jejunum and ileum has been measured using X-ray microanalysis. The range of values was wide, the highest being found in stem cells and enterocytes. Significant differences were found in jejunum from gastric carcinoma patients and ileum from Crohn's disease patients compared with patients with non malignant, non inflammatory disease.  相似文献   
2.
Keitt TH  Fischer J 《Ecology》2006,87(11):2895-2904
The response of ecological communities to anthropogenic disturbance is of both scientific and practical interest. Communities where all species respond to disturbance in a similar fashion (synchrony) will exhibit large fluctuations in total biomass and dramatic changes in ecosystem function. Communities where some species increase in abundance while others decrease after disturbance (compensation) can maintain total biomass and ecosystem function in the face of anthropogenic change. We examined dynamics of the Little Rock Lake (Wisconsin, USA) zooplankton community in the context of an experimental pH manipulation conducted in one basin of the lake. A novel application of wavelets was used to partition patterns of synchrony and compensation by time scale. We find interestingly that some time series show both patterns of synchrony and compensation depending on the scale of analysis. Within the unmanipulated basin, we found subtle patterns of synchrony and compensation within the community, largely at a one-year time scale corresponding to seasonal variation. Within the acidified lake basin, dynamics shifted to longer time scales corresponding to the pattern of pH manipulation. Comparisons between pairs of species in different functional groups showed both strong compensatory and synchronous responses to disturbance. The strongest compensatory signal was observed for two species of Daphnia whose life history traits lead to synchrony at annual time scales, but whose differential sensitivity to acidification led to compensation at multiannual time scales. The separation of time scales inherent in the wavelet method greatly facilitated interpretation as patterns resulting from seasonal drivers could be separated from patterns driven by pH manipulation.  相似文献   
3.
Islands harbor a disproportionate amount of the earth's biodiversity, but a significant portion has been lost due in large part to the impacts of invasive mammals. Fortunately, invasive mammals can be routinely removed from islands, providing a powerful tool to prevent extinctions and restore ecosystems. Given that invasive mammals are still present on more than 80% of the world's major islands groups and remain a premier threat to the earth's biodiversity, it is important to disseminate replicable, scaleable models to eradicate invasive mammals from islands. We report on a successful model from western México during the past decade. A collaborative effort between nongovernmental organizations, academic biologists, Mexican government agencies, and local individuals has resulted in major restoration efforts in three island archipelagos. Forty-two populations of invasive mammals have been eradicated from 26 islands. For a cost of USD 21,615 per colony and USD 49,370 per taxon, 201 seabird colonies and 88 endemic terrestrial taxa have been protected, respectively. These conservation successes are a result of an operational model with three main components: i) a tri-national collaboration that integrates research, prioritization, financing, public education, policy work, capacity building, conservation action, monitoring, and evaluation; ii) proactive and dedicated natural resource management agencies; and iii) effective partnerships with academic researchers in Mexico and the United States. What is now needed is a detailed plan to eradicate invasive mammals from the remaining islands in the region that integrates the needed additional financing, capacity, technical advances, and policy issues. Island conservation in western Mexico provides an effective approach that can be readily applied to other archipelagos where conservation efforts have been limited.  相似文献   
4.
5.
Historically, the migration of birds has been poorly understood in comparison to other life stages during the annual cycle. The goal of our research is to present a novel approach to predict the migratory movement of birds. Using a blue-winged teal case study, our process incorporates not only constraints on habitat (temperature, precipitation, elevation, and depth to water table), but also approximates the likely bearing and distance traveled from a starting location. The method allows for movement predictions to be made from unsampled areas across large spatial scales. We used USGS’ Bird Banding Laboratory database as the source of banding and recovery locations. We used recovery locations from banding sites with multiple within-30-day recoveries were used to build core maximum entropy models. Because the core models encompass information regarding likely habitat, distance, and bearing, we used core models to project (or forecast) probability of movement from starting locations that lacked sufficient data for independent predictions. The final model for an unsampled area was based on an inverse-distance weighted averaged prediction from the three nearest core models. To illustrate this approach, three unsampled locations were selected to probabilistically predict where migratory blue-wing teals would stopover. These locations, despite having little or none data, are assumed to have populations. For the blue-winged teal case study, 104 suitable locations were identified to generate core models. These locations ranged from 20 to 228 within-30-day recoveries, and all core models had AUC scores greater than 0.80. We can infer based on model performance assessment, that our novel approach to predicting migratory movement is well-grounded and provides a reasonable approximation of migratory movement.  相似文献   
6.
7.
Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Pacific are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans.  相似文献   
8.
McRae BH  Dickson BG  Keitt TH  Shah VB 《Ecology》2008,89(10):2712-2724
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.  相似文献   
9.
Landscape connectivity: A conservation application of graph theory   总被引:5,自引:0,他引:5  
We use focal-species analysis to apply a graph-theoretic approach to landscape connectivity in the Coastal Plain of North Carolina. In doing so we demonstrate the utility of a mathematical graph as an ecological construct with respect to habitat connectivity. Graph theory is a well established mainstay of information technology and is concerned with highly efficient network flow. It employs fast algorithms and compact data structures that are easily adapted to landscape-level focal species analysis. American mink (Mustela vison) and prothonotary warblers (Protonotaria citrea) share the same habitat but have different dispersal capabilities, and therefore provide interesting comparisons on connections in the landscape. We built graphs using GIS coverages to define habitat patches and determined the functional distance between the patches with least-cost path modeling. Using graph operations concerned with edge and node removal we found that the landscape is fundamentally connected for mink and fundamentally unconnected for prothonotary warblers. The advantage of a graph-theoretic approach over other modeling techniques is that it is a heuristic framework which can be applied with very little data and improved from the initial results. We demonstrate the use of graph theory in a metapopulation context, and suggest that graph theory as applied to conservation biology can provide leverage on applications concerned with landscape connectivity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号