首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
污染及防治   6篇
  2019年   3篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.

An analytical methodology was developed to characterize the colloidal distribution of trace elements of interest in environmental waters sampled in a same site and enables the different colloidal distributions from waters to be compared. The purpose was to provide consistent information related to the origin and nature of colloids responsible for the transport of trace element(s). The work was motivated by the observed enhanced mobility of uranium in soil. The colloidal size continuum was investigated by a multi-technique approach involving asymmetric flow field-flow fractionation (AF4) coupled with ultraviolet spectroscopy (UV), multi angle light scattering (MALS), and atomic mass spectrometry (ICPMS). To take into consideration the size and shape variability specific to each sample, the size distributions were established from the gyration radii measured from MALS, also considering the size information from standard nanospheres fractionated by AF4. A new parameter called “shape index” was proposed. It expresses the difference in hydrodynamic behavior between analytes and spherical particles taken as reference. Under AF4 diffusion conditions, it can be considered as an evaluator of the deviation from the sphericity of the fractionated analytes. AF4-UV-MALS-ICPMS enabled the dimensional and chemical characteristics of the colloidal size continuum to be obtained. As a “proof of concept”, the developed methodology was applied at a field scale, in a reference study site. In order to have a “dynamic understanding”, the investigation was based on the joint characterization of colloids from surface waters and soil leachates from static and dynamic processes. In the water samples of the study site, the continuum of gyration radius ranged from a few nanometers up to 200 nm. Colloids containing iron, aluminum, and organic carbon were involved in the uranium transport in the soil column and surface waters. The colloidal uranium concentration in the surface water increased from the upstream location (approximately 13 ng (U) L?1) to the downstream location (approximately 60 ng (U) L?1).

  相似文献   
2.
Gigault J  Grassl B  Lespes G 《Chemosphere》2012,86(2):177-182
This work focuses on the influence of humic acids (HAs) on the fate of carbon nanotubes (CNTs) in aqueous media. This influence was demonstrated by mixing CNT powder with HAs in aqueous solution in varying concentrations. The aqueous media containing HAs and CNTs were size-characterized by asymmetrical flow field-flow fractionation (AsFlFFF) coupled with multi-angle light scattering (MALS). This coupling yielded information concerning the size distribution of single- and multi-walled CNTs (SWCNTs and MWCNTs) and HAs under different physico-chemical conditions that can occur in environmental water. HAs can disperse individual CNTs in aqueous media. However, the difference in the physical structure between SWCNTs and MWCNTs leads to significant differences in the quantity of HA that can adsorb onto the nanotube surface and in the stability of the CNT/HA complex. Compared with MWCNTs, SWCNTs suspended in HAs are less affected by changing ionic strength with respect to stability and the amount suspended.  相似文献   
3.
Kinetic degradation processes of butyl- and phenyltins in soils   总被引:3,自引:0,他引:3  
Heroult J  Nia Y  Denaix L  Bueno M  Lespes G 《Chemosphere》2008,72(6):940-946
The degradation of organotin compounds (OTC) in agricultural and forest soils is studied in sandy soil samples. Individual experiments involving the three butyl- and the three phenyltins were carried out during 90 d in controlled conditions (darkness, 28 degrees C, aerobic conditions, 13% moisture) and with spiking concentration representative of environmental levels (20-50 micrg(Sn) kg(-1)). After the validation of first-order degradation kinetic model, mechanisms involved throughout the study were considered. Degradation pathways are proposed for butyl- and phenyltins and discussed according to literature data. The degradation of mono- (MBT, MPhT), di-organotins (DBT, DPhT) and TBT is clearly identified as a single successive loss of an organic group whereas TPhT is directly degraded to MPhT. The half-life times were dependent on their substitution degree, ranging from 24 (TPhT) to 220 (MBT) d. The less substituted the OTC is, the more persistent it is. In the range 4.3-5.7, pH does not seem to influence OTC degradation under the present operating conditions. Finally this study shows the significant persistence in soil samples in our experimental conditions for most of studied organotins and highlights the potential impact on soil quality.  相似文献   
4.
TBT and TPhT persistence in a sludged soil   总被引:1,自引:0,他引:1  
Marcic C  Le Hecho I  Denaix L  Lespes G 《Chemosphere》2006,65(11):2322-2332
The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography–pulsed flame photometric analysis (GC–PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 μg(Sn) kg−1 of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 μg(Sn) kg−1, less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 μg(Sn) kg−1 in our conditions) the pH had no effect on TBT and TPhT persistence.  相似文献   
5.
This paper provides quantitative information on the transfer of TBT (tributyltin) and TPhT (triphenyltin) from sludged soil to cultivated lettuce. The effect of their initial concentrations in the soil (varying from 20 to 50 microg(Sn)kg(-1) for each triorganotin), sludge amount (between 1% and 9%), and cultivation duration (32-54 days) was evaluated by means of experimental designs. The impact of the cultivation temperature at 13 degrees C and 19 degrees C on organotin fate in the soil/plant system was also considered. The final concentration of a given organotin in the plant roots was found to depend directly on its initial concentration in the soil. A total of (85+/-15)% of initial TBT in the soil was still present at the end of the experiments, regardless of the cultivation duration. Consequently, TBT appeared to be taken up by lettuce continually. A total of (75+/-5)% of TPhT was found to be degraded in the soil at 54 days. So, this compound could have been taken up by the plant at the beginning of the cultivation. Sludge amount seemed to have a negative effect on TPhT concentration in a plant at 32 days. This could be due to the quantitative TPhT sorption onto the sludge, observed just after spiking. Organotin plant uptake appeared to be more important at 19 degrees C than at 13 degrees C. TBT and TPhT were mainly accumulated in the roots, and up to 2% and 10% of TPhT and TBT, respectively, were translocated to the shoots. Despite TPhT degradation, products in large amounts were present in the soil and were not significantly taken up by the plant. They possibly remained immobilized on solid phases of the sludged soil.  相似文献   
6.
Environmental Science and Pollution Research - This article deals with analytical chemistry devoted to nano-objects. A short review presents nano-objects, their singularity in relation to their...  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号