首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   1篇
基础理论   1篇
污染及防治   6篇
  2018年   1篇
  2015年   1篇
  2013年   3篇
  2010年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 26 毫秒
1
1.
The Coordinating Research Council convened two Real-Time PM Measurement Workshops in December 2008 and March 2009 to take an intensive look at the current status and future directions of combustion aerosol measurement. The purpose was to examine the implications of parallel rapid developments over the past decade in ambient aerosol science, engine aftertreatment technology, and aerosol measurement methodology, which provide benefits and challenges to the stakeholders in air quality management. The workshops were organized into sessions targeting key issues in ambient and source combustion particulate matter (PM). These include (1) metrics to characterize and quantify PM, (2) the need to reconcile ambient and source measurements, (3) the role of atmospheric transformations on modeling emissions and exposures, (4) the impact of sampling conditions on PM measurement, and (5) the potential benefits of novel PM instrumentation. This paper distills the material presented by subject experts and the insights derived from the in-depth discussions that formed the core of each session. The paper's objectives are to identify areas of consensus that allow wider practical application of the past decade's advances in combustion aerosol measurement to improve emissions and air quality modeling, develop emissions reduction strategies, and to recommend directions for progress on issues in which uncertainties remain.  相似文献   
2.
An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.  相似文献   
3.
Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10-30 nm) that is 2-4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4(2-) components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   
4.
Biologists, chemists, and physicists are collaborating to develop highly sensitive and specific biosensors for pathogen detection in the food, healthcare, and environmental sectors. Those novel biosensors allow quick detection and are thus expected to solve the issues of the emergence of highly virulent or antibiotic-resistant pathogens. This article reviews different types of biosensors used for pathogen detection, classified based on the type of transducer used. Optical biosensors integrate labeled means, e.g., fluorophores, quantum dots, and carbon dots to overcome photobleaching. Surface plasmon resonance is also used for enhanced sensitivity. Mechanical biosensors with piezoelectric crystals and cantilevers are adapted for the detection of food pathogens without sample preparation or labels. Conventional methods using electrodes for the measurement of electrochemical changes with differential pulse voltammetry or impedance spectroscopy are fast and highly sensitive. Immunosensors are developed for pathogen detection at trace levels using sample enrichment, signal amplification, and new visual detection techniques.  相似文献   
5.
ABSTRACT

Comparison between particle size distributions recorded directly at the tailpipes of both diesel and gasoline vehicles and measurements made using a conventional dilution tunnel reveals two problems incurred when using the latter method for studying particle number emissions. One is the potential for particulate matter (PM) artifacts originating from hydrocarbon material stored in the transfer hose connecting the tailpipe to the dilution tunnel, and the other is the particle coagulation (as well as condensation and chemical changes) that occurs during the transport. Both are potentially generic to current PM emissions measurement practices. The artifacts typically occur as a nanoparticle mode (10–30 nm) that is 2–4 orders of magnitude larger than what is present in the vehicle exhaust and can easily be mistaken for a similar mode that can arise from the nucleation of hydrocarbon or SO4 2-components in the exhaust under appropriate dilution rates. Wind tunnel measurements are in good agreement with those made directly from the tailpipe and substantiate the potential for artifacts. They reveal PM levels for the recent model port fuel injection (PFI) gasoline vehicles tested that are small compared with the ambient background particle level during steady-state driving. The PM emissions recorded for drive cycles such as the Federal Test Procedure (FTP) and US06 occur primarily during acceleration, as has been previously noted. Light-duty diesel vehicle emissions normally exhibit a single lognormal mode centered between 55 and 80 nm, although a nonartifact nanoparticle mode in some cases appears at a 70-mph cruise up a grade.  相似文献   
6.
我国环境监测体制改革探讨   总被引:1,自引:0,他引:1  
本文分析了目前我国环境监测工作中普遍存在的体制不顺、职责不明、行政干预、重复监测、资源浪费、信息混乱等问题,提出监测机构垂直管理,调整监测职能,打破条块分割,整合社会监测资源,引入第三方检测的具体构想。  相似文献   
7.
Abstract

A study was conducted from summer 1995 to summer 1997 to assess the seasonal occurrence of pesticide residues and other organic contaminants, polychlorinated biphenyls (PCBs), in water at the estuaries of Rosetta and Damiatta branches of the Nile river. The results indicated that organochlorine compounds (OCs) including HCB, lindane, p,p‘‐DDE, p,p‘DDD, p,p‘‐DDT, aroclor 1254 and aroclor 1260 were present in all the water samples at concentration levels ranging between 0.195–0.240, 0.286–0.352, 0.035–0.067, 0.019–0.033, 0.024–0.031, 0.390–0.70 and 0.166–0.330 μg/l, respectively. The levels of these compounds were higher in water of Damiatta branch than those found in water of Rosetta branch. Aldrin, dieldrin and endrin were not detected in all water samples. Only 4 compounds from 36 organophosphorus insecticides, fungicides and s‐triazine herbicides tested were detected in water samples collected during summer and autumn seasons from Rosetta branch. The concentration levels of these detected compounds, dimethoate, malathion, captan, and ametryne, ranged from 0.011 to 0.340 μg/l, respectively. Similar compounds during the same seasons as found in water of Rosetta branch were also detected in water of Damiatta branch except ametryne. The levels of the detected compounds (dimethoate, malathion and captan) ranged between 0.030 and 0.330 μg/l. The levels of detected organophosphorus insecticides, fungicides and s‐triazine herbicides were in the order: dimethoate > malathion > captan > ametryne.  相似文献   
8.
Abstract

An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号