首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
综合类   1篇
污染及防治   2篇
评价与监测   2篇
  2022年   1篇
  2013年   1篇
  2009年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.  相似文献   
2.
3.
Plants have been used as good bio-indicators and genetic toxicity of environmental pollution in recent years. In this study, aquatic plants Hydrilla verticillata and Ceratophyllum demersum treated with 10 μmol/L Cd, 5 μmol/L Hg, and 20 μmol/L Cu for 96 h, showed changes in chlorophyll, protein content, and in DNA profiles. The changes in DNA profiles included variation in band intensity, presence or absence of certain bands and even appearance of new bands. Genomic template stability test performed for the ...  相似文献   
4.
Fluoride concentration and other parameters in groundwater from 261 villages in Tehsil Kheragarh of District Agra were assessed and attempts were made to observe the relationship between fluoride and other water quality parameters. Of 658 groundwater samples (collected from separate sources) analysed for fluoride, 27% were in the range of 0–1.0 mg/L, 25% in 1.0–1.5 mg/L, 32% in1.5–3.0 mg/L and 16% above 3.0 mg/L. The highest fluoride concentration recorded was 12.80 mg/L. Significant correlation of fluoride with pH, alkalinity, Na, SiO2 and PO4 were observed. Factor analysis was also attempted in order to identify the contributing sources.  相似文献   
5.
Plants of L. leucocephala were grown in 100%soil (as control), 100% fly-ash and fly-ash amendedwith 50% press mud for 80 days, and analysed withrespect to plant growth, elemental composition andphysiological changes in different parts of the plant.The results revealed that amending fly-ash with pressmud enhanced plant growth as well as otherphysiological responses such as chlorophyll, protein,in vivo nitrate reductase activity compared to100% fly-ash treated plants. The elements Fe, Zn, Cuand Mn accumulated in larger quantities in plantsgrown in 100% fly-ash, and followed the order ofaccumulation Fe > Zn > Cu > Mn. The results of thisstudy indicate that ash amending with press mud mayprovide more favourable conditions for the growth ofthis tree species.  相似文献   
6.

Plants need to survive with changing environmental conditions, be it different accessibility to water or nutrients, or attack by insects or pathogens. Few of these changes, especially heavy metal stress, can become more stressful and needed strong countermeasures to ensure survival of plants. Priming, a pre-sowing hydration treatment, involves pre-exposure of plants to an eliciting component which enhance the plant’s tolerance to later stress events. By considering the role of micronutrients in aiding plants to cope up under adverse conditions, this review addresses various aspects of micronutrient seed priming in attenuating heavy metal stress. Priming using micronutrients is an adaptive strategy that boosts the defensive capacity of the plant by accumulating several active or inactive signaling proteins, which hold considerable importance in signal amplification against the triggered stimulus. Priming induced ‘defence memory’ persists in both present generation and its progeny. Therefore, it is considered a promising approach by seed technologist for commercial seed lots to enhance the vigour in terms of seed germination potential, productivity and strengthening resistance response against metalloid stress. The present review provides an overview regarding the potency of priming with micronutrient to ameliorate harmful effects of heavy metal stress, possible mechanism how attenuation is accomplished, role of priming in enhancing crop productivity and inducing defence memory against the metalloid stress stimulus.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号