首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   3篇
  2013年   2篇
  1984年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Aldicarb, Temik® 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredent)/ha and carrots (Caucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/ 50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 6l to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot > in soil > in hydroponic solution.  相似文献   
2.
Aldicarb, Temik 15 G, was incorporated in furrows at 3.37 and 6.73 kg ai (active ingredient)/ha and carrots (Daucus carota L.) were directly seeded on the same day. The numbers of nematode larvae were significantly suppressed in the treated plots; averages were 249, 74, and 51/50 cc soil samples for control (0), 3.37 and 6.73 kg ai/ha, respectively. Aldicarb treatment resulted in a 28% yield increase as compared to the untreated. Aldicarb residue in carrots was 28 ppb for the low treatment and 46 ppb for the high. Residual levels in soil of high treatment declined from 61 to 31 ppb during two weeks prior to harvest, meanwhile, those in the low decreased slightly from 13 to 12 ppb. Carrots placed in hydroponic solution containing aldicarb 14.5 ppm for 6 days, had an aldicarb residue of 10.26 ppb and the hydroponic solution, 2.7 ppb. Persistence of aldicarb residue was in carrot greater than in soil greater than in hydroponic solution.  相似文献   
3.
Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement of monitoring programmes. Monitoring of toxic algae by means of traditional methods, i.e., light microscopy, can be time consuming when many samples have to be routinely analysed. Reliable species identification requires expensive equipment and trained personnel to carry out the analyses. However, all techniques for the monitoring of harmful algae usually require transportation of samples to specialised laboratories. In many monitoring laboratories, results are usually obtained within five working days after receiving the sample and therefore preventative measures are not always possible. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins and the speed at which the results can be obtained. Assays are based on the discrimination of the genetic differences of the different species and species-specific probes can be designed. Such probes have been adapted to a microarray or phylochip format and assessed in several EU monitoring sites. Microarray results are presented for 1 year of field samples validated with cell counts from concentrated samples taken during toxic events from the weekly sampling of the Galician Monitoring Programme done by INTECMAR. The Galician monitoring laboratory does their own counting and their results are posted on their web site within 24 h. There was good correlation between cells present and microarray signals. In the few cases of false negatives, these can be attributed to poor RNA extraction of the target species, viz. Prorocentrum or Dinophysis. Where potential false positives were encountered, the smaller volume taken for cell counts as compared to the upto 300 times more volume taken for RNA extraction for the microarray is likely the cause for these differences, making the microarray more sensitive. The microarray was able to provide better species resolution in Alexandrium and Pseudo-nitzschia. In all cases, the toxins recovered by the toxin array were matched by target species in the array or in the cell counts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号