首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
污染及防治   5篇
  2017年   2篇
  2013年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
ABSTRACT

An age-dependent theoretical model has been developed to predict PM dosimetry in children's lungs. Computer codes have been written that describe the dimensions of individual airways and the geometry of branching airway networks within developing lungs. Breathing parameters have also been formulated as functions of subject age. Our computer simulations suggest that particle size, age, and activity level markedly affect deposition patterns of inhaled air pollutants. For example, the predicted lung deposition fraction is 38% in an adult but is nearly twice as high (73%) in a 7-month-old for 2-um particles inhaled during heavy breathing. Tracheobronchial (TB) and pulmonary (or alveolated airways, P) deposition patterns may also be calculated using the model. Due to different clearance processes in the TB and P airways (i.e., mucociliary transport and macrophage action, respectively), the determination of compartmental dose is important for PM risk assessment analyses. Furthermore, the results of such simulations may aid in the setting of regulatory standards for air pollutants, as the data provide a scientific basis for estimating dose delivered to a designated sensitive subpopulation (children).  相似文献   
3.
An age-dependent theoretical model has been developed to predict PM dosimetry in children's lungs. Computer codes have been written that describe the dimensions of individual airways and the geometry of branching airway networks within developing lungs. Breathing parameters have also been formulated as functions of subject age. Our computer simulations suggest that particle size, age, and activity level markedly affect deposition patterns of inhaled air pollutants. For example, the predicted lung deposition fraction is 38% in an adult but is nearly twice as high (73%) in a 7-month-old for 2-micron particles inhaled during heavy breathing. Tracheobronchial (TB) and pulmonary (or alveolated airways, P) deposition patterns may also be calculated using the model. Due to different clearance processes in the TB and P airways (i.e., mucociliary transport and macrophage action, respectively), the determination of compartmental dose is important for PM risk assessment analyses. Furthermore, the results of such simulations may aid in the setting of regulatory standards for air pollutants, as the data provide a scientific basis for estimating dose delivered to a designated sensitive subpopulation (children).  相似文献   
4.
We investigated the effects of a warmer climate, and seasonal trends, on the fate of oil spilled in the Arctic. Three well blowout scenarios, two shipping accidents and a pipeline rupture were considered. We used ensembles of numerical simulations, using the OSCAR oil spill model, with environmental data for the periods 2009–2012 and 2050–2053 (representing a warmer future) as inputs to the model. Future atmospheric forcing was based on the IPCC’s A1B scenario, with the ocean data generated by the hydrodynamic model SINMOD. We found differences in “typical” outcome of a spill in a warmer future compared to the present, mainly due to a longer season of open water. We have demonstrated that ice cover is extremely important for predicting the fate of an Arctic oil spill, and find that oil spills in a warming climate will in some cases result in greater areal coverage and shoreline exposure.  相似文献   
5.
Renewed political and commercial interest in the resources of the Arctic, the reduction in the extent and thickness of sea ice, and the recent failings that led to the Deepwater Horizon oil spill, have prompted industry and its regulatory agencies, governments, local communities and NGOs to look at all aspects of Arctic oil spill countermeasures with fresh eyes. This paper provides an overview of present oil spill response capabilities and technologies for ice-covered waters, as well as under potential future conditions driven by a changing climate. Though not an exhaustive review, we provide the key research results for oil spill response from knowledge accumulated over many decades, including significant review papers that have been prepared as well as results from recent laboratory tests, field programmes and modelling work. The three main areas covered by the review are as follows: oil weathering and modelling; oil detection and monitoring; and oil spill response techniques.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号