首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
废物处理   10篇
综合类   1篇
基础理论   1篇
污染及防治   2篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on six case studies in which bioremediation of dense nonaqueous‐phase liquids (DNAPLs) was performed; the objective was to demonstrate that there is credible evidence for bioremediation as a viable environmental remediation technology. The first two case studies from the forum have been previously published; this third case study involves a pilot‐scale demonstration that investigated the effects of biological activity on enhancing dissolution of an emplaced tetrachloroethene (PCE) DNAPL source. It used a controlled‐release test cell with PCE as the primary DNAPL in a porous media groundwater system. Both laboratory tests and a field‐scale pilot test demonstrated that bioaugmentation can stimulate complete dechlorination to a nontoxic end product and that the mass flux from a source zone increases when biological dehalorespiration activity is enhanced through nutrient (electron donor) addition and bioaugmentation. All project goals were met. Important achievements include demonstrating the ability to degrade a PCE DNAPL source to ethene and obtaining significant information on the impacts to the microbial populations and corresponding isotope enrichments during biodegradation of a source area. © 2007 Wiley Periodicals, Inc.  相似文献   
2.
Journal of Material Cycles and Waste Management - The bioleaching process comprises two mechanisms: direct action of the bacteria and indirect effect of low pH. In this work, the effect of bacteria...  相似文献   
3.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.  相似文献   
4.
5.
Swimming pool users are a source of various contaminants and microorganisms. Conventional chlorine-based reagents treatment is commonly used to disinfect water. However, this disinfection treatment has serious serious health issues such as formation of carcinogenic by-products, i.e., trihalomethanes. In order to prevent this problem, an electrochemical disinfection process was carried out using synthetic and real swimming pool waters. The performance of the electrochemical system was evaluated by studying the effect of current intensity (0.5–3.0 A), treatment time, type of anode (Nb/BDD and Ti/Pt) and the initial concentration of pathogens Escherichia coli and P. aeruginosa. Results show that real swimming pool water, initially containing 106 CFU/100 mL of pathogens, was disinfected at current intensities of 1.5 and 3.0 A using, respectively, Nb/BDD and Ti/Pt as anode materials (CFU: colony-forming units, BDD: boron-doped diamond). This work is also one of the few showing the up-scaling of electrochemical disinfection of real swimming pool water at large volumes of 100 L.  相似文献   
6.
7.
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on six case studies in which bioremediation of dense nonaqueous phase liquids (DNAPLs) was performed. The objective was to demonstrate that there is credible evidence for bioremediation as a viable environmental remediation technology. A discussion of the first case study from the ITRC forum was published in the previous issue of Remediation. This article presents a discussion of the second case study, which involves enhanced reductive dechlorination (ERD) of tetrachloroethene (PCE) in unconsolidated soils—primarily silts and clays with very low permeabilities. The project results indicate that complete reductive dechlorination was achieved and provide encouragement that large amounts of nonaqueous solvent can be brought into the reductive dechlorination treatment process by dissolution and desorption, giving support to the contention that the capacity to attack nonaqueous mass is a prerequisite for any effective treatment of DNAPL source zones. The site geology for this project was relatively unfavorable, and further work is needed to confirm that the ERD technology can economically reach a natural attenuation endpoint for this type of setting. © 2006 Wiley Periodicals, Inc.  相似文献   
8.
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on case studies in which bioremediation of dense nonaqueous‐phase liquids (DNAPLs) was performed. This first case study, the Test Area North (TAN) site of the Idaho National Engineering and Environmental Laboratory, involves a trichloroethene (TCE) residual source area in a deep, fractured basalt aquifer that has been undergoing enhanced bioremediation since January 1999. Complete dechlorination from TCE to ethene was documented within nine months of operation, and sodium lactate injections were shown to enhance TCE mass transfer from the residual source. Since that time, optimization of injection strategies has maintained efficient dechlorination while demonstrating accelerated cleanup at a lower cost by changing to a whey powder amendment that solubilizes DNAPL. © 2006 Wiley Periodicals, Inc.  相似文献   
9.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   
10.
The application of a catalytic-activated carbon to the solidification/stabilization (S/S) process for immobilization of phenol and 2-chlorophenol and catalytic decomposition was investigated. The effect of the catalytic-activated carbon, in amounts of 0.25-1% (by dry sand wt.), on the leaching of phenol and 2-chlorophenol was studied. H2O2 was added as a source of oxygen in the amounts of 1 or 5%, with respect to liquid solution weight. Toxicity characteristic leaching procedure (TCLP) leaching tests showed that adding the catalytic-activated carbon to the S/S matrix significantly reduced the leachability of both phenol and 2-chlorophenol. Only trace amounts of phenol were found in the leaching solution, while the concentration of 2-chlorophenol was below the detection limit of the gas chromatography (GC). Without addition of the catalytic-activated carbon, 87% of the phenol and 92% of the 2-chlorophenol leached. Additional tests on TCLP leachate solutions using GC-mass spectrometry indicated the existence of simple, less hazardous, hydrocarbons, including alcohol. Catalytic-activated carbons treated with phenol in the presence of H2O2 were also analyzed using time of flight-secondary ion mass spectroscopy (TOF-SIMS). Results indicate that the phenol aromatic ring was broken by the catalytic reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号