首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
污染及防治   2篇
社会与环境   1篇
  2023年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The volume of industrial and domestic wastewater is increasing significantly year by year with the change in the lifestyle based on mass consumption and mass disposal brought about by the dramatic development of economies and industries. Therefore, effective advanced wastewater treatment is required because wastewater contains a variety of constituents such as particles, organic materials, and emulsion depending on the resource. However, residual chemicals that remain during the treatment of wastewaters form a variety of known and unknown by-products through reactions between the chemicals and some pollutants. Chronic exposure to these by-products or residual chemicals through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. For example, residual aluminium salts in treated water may cause Alzheimer's disease (AD). As for carbon nanotubes (CNTs), despite their potential impacts on human health and the environment having been receiving more and more attention in the recent past, existing information on the toxicity of CNTs in drinking water is limited with many open questions. Furthermore, though general topics on the human health impacts of traditional water treatment chemicals have been studied, no comparative analysis has been done. Therefore, a qualitative comparison of the human health effects of both residual CNTs and traditional water treatment chemicals is given in this paper. In addition, it is also important to cover and compare the human health effects of CNTs to those of traditional water treatment chemicals together in one review because they are both used for water treatment and purification.  相似文献   
2.
Environmental Science and Pollution Research - Photodynamic antimicrobial chemotherapy (PACT) is extensively studied as a strategic method to inactivate pathogenic microbes in wastewater for...  相似文献   
3.
Microbial source tracking (MST) and chemical source tracking (CST) markers were utilized to identify fecal contamination in harvested rainwater and gutter debris samples. Throughout the sampling period, Bacteroides HF183 was detected in 57.5 % of the tank water samples and 95 % of the gutter debris samples, while adenovirus was detected in 42.5 and 52.5 % of the tank water and gutter debris samples, respectively. Human adenovirus was then detected at levels ranging from below the detection limit to 316 and 1253 genome copies/μL in the tank water and debris samples, respectively. Results for the CST markers showed that salicylic acid (average 4.62 μg/L) was the most prevalent marker (100 %) in the gutter debris samples, caffeine (average 18.0 μg/L) was the most prevalent in the tank water samples (100 %) and acetaminophen was detected sporadically throughout the study period. Bacteroides HF183 and salicylic acid (95 %) and Bacteroides HF183 and caffeine (80 %) yielded high concurrence frequencies in the gutter debris samples. In addition, the highest concurrence frequency in the tank water samples was observed for Bacteroides HF183 and caffeine (60 %). The current study thus indicates that Bacteroides HF183, salicylic acid and caffeine may potentially be applied as source tracking markers in rainwater catchment systems in order to supplement fecal indicator analyses.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号