首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   2篇
废物处理   1篇
综合类   5篇
基础理论   1篇
污染及防治   3篇
评价与监测   2篇
社会与环境   2篇
  2013年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
  1993年   1篇
  1991年   1篇
  1964年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Previously, the presence of metals in arthropod mandibles has been linked with harder cuticle, and in termites, a 20% increase in hardness has been found for mandibles containing major quantities of zinc. The current study utilises electron microscopy and energy-dispersive X-ray microanalysis to assess incidence and abundance of metals in all extant subfamilies of the Isoptera. The basal clades contain no zinc and little to no manganese in the cutting edge of the mandible cuticle, suggesting that these states are ancestral for termites. However, experimentation with mandibles in vitro indicates the presence of some elements of the cuticular biochemistry necessary to enable uptake of zinc. The Termopsidae, Serritermitidae, Rhinotermitidae and Termitidae all contain minor quantities of manganese, while trace to minor quantities of zinc occur in all except the Serritermitidae. In contrast, all Kalotermitidae or drywood termites contain major levels of zinc in the mandible edge. Diet and life type are explored as links to metal profiles across the termites. The presence of harder mandibles in the drywood termites may be related to lack of access to free water with which to moisten wood. Scratch tests were applied to a set of mandibles. The coefficient of friction for Cryptotermes primus (Kalotermitidae) mandibles, when compared with species from other subfamilies, indicates that zinc-containing mandibles are likely to be more scratch resistant.  相似文献   
2.
Wildlife deaths associated with cyanide-bearing tailings dams are a significant environmental issue that has affected the gold mining industries for many years and still characterized by little knowledge about how to measure, monitoring, reduce or eliminate those deaths. The purpose of this paper is statistically to determine: the potential for establishing causal relations between exposure to cyanide (in its most common species relevant to tailings) and response (measured by death counts), to develop a protocol of data analysis, the understanding of the significance of data gaps, and the effect of likely risk management interventions to achieve the goals of the International Cyanide Management Code (ICMC); [ICMC The International Cyanide Management Institute. International cyanide management code, the international cyanide management institute 2005, www.cyanidecode.org.]. However, operator's certification under the ICMC is difficult because of the limited data and potentially serious under-estimation of the death counts. This is due to observational skill and monitoring frequency, the small size of the carcasses, large extent of tailings facilities, carcasses loss by; entombment in tailings, sink, or taken by scavenging wildlife. This (1st order or bounding) assessment results focus on bird-deaths, which appear to be most frequent at sites where elevated cyanide concentrations are found. Those results indicate that the empirical causal associations we generate support the hypotheses that: This paper also develops the basis for a complete risk assessment study to be based on additional data gathering activities and detailed statistical analyses. These two activities, combined with a risk management plan also being developed, will provide a tool for compliance with the ICMC.  相似文献   
3.
The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.  相似文献   
4.
A number of arthropod taxa contain metals in their mandibles (jaws), such as zinc, manganese, iron, and calcium. The occurrence of zinc and its co-located halogen chlorine have been studied in relation to the mechanical properties and shown to be linked in a direct fashion with increasing concentration. Hardness along with elastic modulus (stiffness) has also been linked to zinc and halogen concentration in some marine polychaete worms. The metal appears to be incorporated within the biological matrix, possibly bonding with proteins. However, the comparative advantage of metal inclusion has not been tested. It is possible that without metals, alternative mechanisms are used to achieve hardness of equal value in similar 'tools' such as mandibles. This question has direct bearing on the significance of metal hardening. In the present article, we compare across mandibles from six termite species, including samples with major zinc concentration, minor manganese, and no metals. Nanoindentation, electron microscopy, and electron microanalysis are used to assess metal concentration, form, and mechanical properties. The data demonstrate that termite mandibles lacking metals when fully developed have lower values for hardness and elastic modulus. Zinc is linked to a relative 20% increase in hardness when compared with mandibles devoid of metals. The similar transition metal, manganese, found in minor concentrations, is not linked to any significant increase in these mechanical properties. This raises the question of the function of manganese, which is as commonly found in insect mandibles as zinc and often located in the same mandibles.  相似文献   
5.
As a developing country, Thailand has a significant issue with di use pollution of the soil ecosystem due to an indiscriminate use of agrichemicals and poorly regulated disposal of a wide variety of hazardous wastes. Practical risk assessment tools based on locallyoccurring species are needed to assess the e ects of di use pollutants on the soil ecosystem in Thailand because reliance on soil criteria developed for overseas conditions may provide inadequate protection. Native soil organisms in Thailand may be more or less sensitive to contaminants compared to overseas test species. This article described a biological indicator approach for ecological risk assessment of di use pollution in the soil ecosystem of Thailand from pesticide application with the aim of developing standardized protocols using native species and locally generated data to better evaluate the ecological risks of non-point source soil pollution. It was found that ecotoxicological assessment provided a better understanding of the ecological impacts that di use pollution induced on Thai environmental conditions. Thai soil biota species were more sensitive to soil contaminants than similar species overseas. Soil series also had an influence on the ecotoxicology of contaminants to soil biota. Collembolan, Cyphoderus sp., was demonstrated as a useful alternative test species to Folsomia candida (international test species) for terrestrial ecotoxicological testing of Thai soils. In addition, the soil biota activities such as soil respiration and earthworm avoidance including soil biodiversity and the litter bag decomposition technique are also good tools to assess the e ects of di use pollution by pesticides on the soil ecosystem of Thailand.  相似文献   
6.
7.
8.
The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with < 1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (< 3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation.  相似文献   
9.
Wildlife deaths associated with cyanide-bearing mine waste solutions have plagued the gold mining industries for many years, yet there is little published data showing the relationship between wildlife mortality and cyanide toxicity. A gap of knowledge exists in monitoring, understanding the causal relationships and managing risks to wildlife from cyanide-bearing waste solutions and tailings. There is a need for the gold industry to address this issue and to meet the International Cyanide Management Code (ICMC) guidelines. The perceived extent of the issue varies, with one study finding the issue inadequately monitored and wildlife deaths grossly underestimated. In Nevada, USA during 1990 and 1991, 9512 carcasses were reported of over 100 species, although there was underestimation due to reporting being voluntary. Of these, birds comprised 80-91% of vertebrate carcasses reported annually. At Northparkes, Australia in 1995, it was initially estimated that 100 bird carcasses were present by mine staff following a tailings incident; when a thorough count was conducted, 1583 bird carcasses were recorded. Eventually, 2700 bird deaths were documented over a four-month period. It is identified that avian deaths are usually undetected and significantly underestimated, leading to a perception that a risk does not exist. Few guidelines and information are available to manage the risks of cyanide to wildlife, although detoxification, habitat modification and denying wildlife access have been used effectively. Hazing techniques have proven ineffective. Apparently no literature exists that documents accurate wildlife monitoring protocols on potentially toxic cyanide-bearing mine waste solutions or any understanding on the analysis of any derived dataset. This places the onus on mining operations to document that no risk to wildlife exists. Cyanide-bearing tailings storage facilities are environmental control structures to contain tailings, a standard practice in the mining industry. Cyanide concentrations below 50 mg/L weak-acid-dissociable (WAD) are deemed safe to wildlife but are considered an interim benchmark for discharge into tailings storage facilities (TSFs). Cyanide is a fast acting poison, and its toxicity is related to the types of cyanide complexes that are present. Cyanide in biota binds to iron, copper and sulfur-containing enzymes and proteins required for oxygen transportation to cells. The accurate determination of cyanide concentrations in the field is difficult to achieve due to sampling techniques and analytical error associated with loss and interferences following collection. The main WAD cyanide complexes in gold mine tailings are stable in the TSF environment but can release cyanide ions under varying environmental conditions including ingestion and absorption by wildlife. Therefore distinction between free, WAD and total cyanide forms in tailings water for regulatory purposes is justified. From an environmental perspective, there is a distinction between ore bodies on the basis of their copper content. For example, wildlife deaths are more likely to occur at mines possessing copper-gold ores due to the formation of copper-cyanide complexes which is toxic to birds and bats. The formation of copper-cyanide complex occurs preferentially to gold cyanide complex indicating the relative importance of economic vs. environmental considerations in the tailings water. Management of cyanide to a perceived threshold has inherent risks since cyanide has a steep toxicity response curve; is difficult to accurately measure in the field; and is likely to vary due to variable copper content of ore bodies and ore blending. Consequently, wildlife interaction needs to be limited to further reduce the risks. A gap in knowledge exists to design or manage cyanide-bearing mine waste solutions to render such facilities unattractive to at-risk wildlife species. This gap may be overcome by understanding the wildlife behaviour and habitat usage of cyanide-bearing solutions.  相似文献   
10.
Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0–7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean?±?SE, 0.9 %?±?0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children’s blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children’s blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号