首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   3篇
污染及防治   3篇
  2022年   1篇
  2010年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
Enrichment and isolation of endosulfan-degrading microorganisms   总被引:3,自引:0,他引:3  
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the isolation and identification of enriched microorganisms, capable of degrading endosulfan. Enrichment was achieved by using the insecticide as either the sole source of carbon or sulfur in parallel studies. Two strains each of fungi (F1 and F4) and bacteria (BF2 and B4) were selected using endosulfan as a sole carbon source. A Pandoraea species (Lin-3) previously isolated in our laboratory using lindane (gamma-HCH) as a carbon source was also screened for endosulfan degradation. F1 and F4 (Fusarium ventricosum) degraded alpha-endosulfan by as much as 82.2 and 91.1% and beta-endosulfan by 78.5 and 89.9%, respectively, within 15 d of incubation. Bacterial strains B4 and Lin-3 degraded alpha-endosulfan up to 79.6 and 81.8% and beta-endosulfan up to 83.9 and 86.8%, respectively, in 15 d. Among the bacterial strains isolated by providing endosulfan as a sulfur source, B4s and F4t degraded alpha-endosulfan by as much as 70.4 and 68.5% and beta-endosulfan by 70.4 and 70.8%, respectively, after 15 d. Degradation of the insecticide occurred concomitant with bacterial growth reaching an optical density (OD600) of 0.366 and 0.322 for B4 and Lin-3, respectively. High OD600 was also noted with the other bacterial strains utilizing endosulfan as a sulfur source. Fungal and bacterial strains significantly decreased the pH of the nutrient culture media while growing on endosulfan. The results of this study suggest that these novel strains are a valuable source of potent endosulfan-degrading enzymes for use in enzymatic bioremediation.  相似文献   
2.
Extensive use of hexavalent chromium [Cr(VI)] in various industrial applications has caused substantial environmental contamination. Chromium-resistant bacteria isolated from soils can be used to remove toxic Cr(VI) from contaminated environments. This study was conducted to isolate chromium-resistant bacteria from soils contaminated with dichromate and describes the effects of some environmental factors such as pH, temperature, and time on Cr(VI) reduction and resistance. We found that chromium-resistant bacteria can tolerate 2500 mg L(-1) Cr(VI), but most of the isolates tolerated and reduced Cr(VI) at concentrations lower than 1500 mg L(-1). Chromate reduction activity of whole cells was detected in five isolates. Most of these isolates belong to the genus Bacillus as identified by the 16S rRNA gene sequencing. Maximal Cr(VI) reduction was observed at the optimum pH (7.0-9.0) and temperature (30 degrees C) of growth. One bacterial isolate (Bacillus sp. ES 29) was able to aerobically reduce 90% of Cr(VI) in six hours. The Cr(VI) reduction activity of the whole cells of five isolates had a K(M) of 0.271 (2.61 mM) to 1.51 mg L(-1) (14.50 mM) and a V(max) of 88.4 (14.17 nmol min(-1)) to 489 mg L9-1) h(-1) (78.36 nmol min(-1)). Our consortia and monocultures of these isolates can be useful for Cr(VI) detoxification at low and high concentrations in Cr(VI)-contaminated environments and under a wide range of environmental conditions.  相似文献   
3.
Reduction of perchlorate and nitrate by salt tolerant bacteria   总被引:11,自引:0,他引:11  
Spent regenerant brine from ion-exchange technology for the removal of perchlorate and nitrate produces a high salt waste stream, which requires remediation before disposal. Bioremediation is an attractive treatment option. In this study, we enriched for salt tolerant bacteria from sediments from Cargill salt evaporation facility (California, USA), the Salton Sea (California, USA), and a high density hydrocarbon oxidizing bacterial cocktail. The bacterial cocktail enrichment culture reduced ClO4- from 500 to 260 mg 1 in 4 weeks. Salt tolerant bacterial isolates from the enrichment cultures and two denitrifying salt tolerant bacteria, Haloferax denitrificans and Parococcus halodenitricans, substantially reduced perchlorate. The highest rate of perchlorate removal was recorded with the isolate, Citrobacter sp.: 32% reduction in 1 week. This bacterium substantially reduced perchlorate in 0-5% NaCl solutions and maximally at 30 degrees C and at an initial pH 7.5. In simulated brines containing 7.5% total solids, the Citrobacter sp. significantly reduced both perchlorate and nitrate with 34.9 and 15.6% reduction, respectively, in 1 week. Coculture of a potent perchlorate reducing, non-salt tolerant (non-saline) bacterium, perclace and the Citrobacter sp. proved most effective for perchlorate removal in the brine (46.4% in 1 week). This study demonstrates that both anions can be reduced in treatment of brines from ion exchange systems.  相似文献   
4.
Bacterial reduction of the Se oxyanions selenate [Se(VI)] and selenite [Se(IV)] to elemental selenium [Se0] is an important biological process in removing Se from drainage water. This study was conducted to characterize the molecular diversity of bacterial populations involved in Se reduction of drainage water amended with rice (Oryza sativa L.) straw and also to monitor the bacterial community shifts during the course of the study. Selenate was removed in the drainage water by the bacteria 5 to 6 d after addition of rice straw. Six Se(VI)- and 32 Se(IV)-reducing bacteria were isolated from rice straw containing sterilized drainage water. Three Se(VI)- and two Se(IV)-reducing bacteria were also isolated from the drainage water. Identification of Se(VI)- and Se(IV)-reducing bacteria by 16S rDNA sequence analysis showed a broad phylogenetic diversity in Se-reducing assemblages. Three major phyla (Proteobacteria, Actinobacteria, and Firmicutes) of bacterial domain with numerous classes, orders, and families constituted the Se-reducing bacterial community. We documented changes in the composition of bacterial assemblages in the drainage water amended with rice straw using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The Shannon-Weaver index (H') revealed higher bacterial diversity at Day 6 in the sterilized and Day 4 in the non-sterilized drainage water amended with rice straw. The results of this study suggest that rice straw, a good source of carbon and energy, harbors a wide range of bacteria useful in Se reduction and may be used in removing Se from drainage water.  相似文献   
5.
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg?1 dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg?1 of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg?1 of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha?1 of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas.  相似文献   
6.
Environmental Science and Pollution Research - Aquaculture has emerged as one of the world’s fastest-growing food industries in recent years, helping food security and boosting global...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号