首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   1篇
基础理论   2篇
污染及防治   4篇
评价与监测   1篇
社会与环境   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Polycyclic aromatic hydrocarbons are ubiquitous persistent pollutants. They may accumulate in sludge during wastewater treatment because of their low biodegradability and their hydrophobic characteristics. Combination of ozonation and anaerobic digestion may be efficient to remove PAHs naturally present in sludge. The objective of this study was to investigate the impact of ozone pre-treatment, with and without surfactant addition, on the anaerobic degradation of 12 PAHs (from low to high molecular weight). Under anaerobic digestion without ozonation pre-treatment, the highest removals were obtained for the lightest PAHs (3-aromatic rings). Ozonation pre-treatment of sludge allowed to increase biodegradability or bioavailability of each PAH, and the PAH removals were well correlated to the PAH solubility. Finally, addition of tyloxapol before sludge ozone pre-treatment had antagonist effects on PAH removal during anaerobic digestion: negative impact on anaerobic ecosystem activity and improvement of PAH bioaccessibility (particularly the PAHs with the highest octanol water partition coefficients).  相似文献   
2.
3.
Background, Aims and Scope Polycyclic Aromatic Hydrocarbons (PAHs) are known for their adverse and cumulative effects at low concentration. In particular, the PAHs accumulate in sewage sludge during wastewater treatment, and may thereafter contaminate agricultural soils by spreading sludge on land. Therefore, sludge treatment processes constitute the unique opportunity of PAH removal before their release in the environment. In this study, the ability of aerobic microorganisms to degrade light and heavy PAHs was investigated in continuous bioreactors treating trace-level PAH-contaminated sludge. Methods Several aerobic reactors were operated under continuous and perfectly mixed conditions to simulate actual aerobic sludge digesters. Three sterile control reactors were performed at 35°C, 45°C or 55°C to assess PAH abiotic losses under mesophilic and thermophilic conditions. Three biological reactors were also operated at 35°C, 45°C or 55°C. Furthermore, 250 mM methanol were added in an additional mesophilic reactor (35°C). All reactors were fed with long-term PAH-contaminated sewage sludge, and PAH removal was assessed by inlet/outlet mass balance. In this study, PAH compounds ranged from 2 to 5-unsubstituted aromatic rings, i.e. respectively from Fluorene to Indeno(123cd)pyrene. Results and Discussion Significant abiotic losses were observed for the lightest PAHs (fluorene, phenanthrene and anthracene), while biodegradation occurred for all PAHs. More than 80% of the lightest PAHs were removed. Biodegradation rates inversely correlated with the increasing molecular weight, and seemed limited by the low bioavailability of the heaviest PAHs (only 50% of removal). The enhancement of PAH bioavailability by increasing the process temperature or adding methanol was tested. A temperature increase from 35°C to 45°C and then to 55°C significantly enhanced the biodegradation of the heaviest PAHs from 50% to 80%. However, high abiotic losses were observed for all PAHs at 55°C, which was attributed to volatilization. Optimal conditions were found at 45°C considering the low abiotic losses and the high PAH biodegradation rates. Similar performances were achieved by addition of methanol in the sludge. It was concluded that increasing temperatures or addition of methanol favored PAH diffusion from solids to an aqueous compartment, and enhanced their bioavailability to PAH-degrading microorganisms. Conclusion In this study, the use of long-term acclimated aerobic ecosystems showed the high potential of aerobic microorganisms to degrade a wide range of PAHs at trace levels. However, PAH biodegradation was likely controlled by their low bioavailability. Two aerobic processes have been finally proposed to achieve efficient decontamination of sewage sludge, at 45°C or in the presence of methanol. The PAH concentrations in reactor outlet were lower than the French requirements, and allow the treated sludge to be spread on agricultural land. Recommendations and Outlook The two proposed aerobic processes used physical or chemical diffusing agents. The global ecological impact of using the latter agents for treating trace level contamination must be considered. Since methanol was completely removed during the process, no additional harm is expected after treatment. However, an increase of temperature to 45°C could drastically increase the energy demand in full-scale plants, and therefore the ecological impact of the process. Moreover, since bioavailability controls PAH biodegradation, efficiency of the processes could also be influenced by the hydraulic parameters, such as mixing and aeration rates. Further experimentations in a pilot scale are therefore recommended, as well as a final assessment of the global environmental benefit of using such aerobic processes in the bioremediation of trace level compounds. - Abbreviations (PAHs): Ant – anthracene; B(a)A – benzo(a)anthracene ; B(b)F – benzo(b)fluoranthene; B(k)F – benzo(k)fluoranthene; B(ghi)P – benzo(g,h,i)perylene; B(a)P – benzo(a)pyrene; Chrys – chrysene; DB – dibenzo(a,h)anthracene; Fluor – fluoranthene; Fluo - fluorene; Ind – indeno(1,2,3-c,d)pyrene; Phe - phenanthrene; Pyr – pyrene - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   
4.
The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.  相似文献   
5.
Regional Environmental Change - Climate change and a growing population around the Mediterranean Rim are increasing the need for water and, consequently, the pressure on resources in terms of both...  相似文献   
6.
Several treatment processes of mixed sludge naturally contaminated with nonylphenol ethoxylates (NPE) were compared in order to evaluate their efficiency for the removal of these endocrine disrupters. Anaerobic and aerobic treatments were carried out in continuous stirred tank reactors, operated separately or combined together, at mesophilic and thermophilic temperatures and with or without ozone post-treatment. Anaerobic mesophilic removal of NPE consisted of complete removal of nonylphenol diethoxylate, incomplete removal of nonylphenol monoethoxylate and non stoechiometric production of nonylphenol, with consequently a NPE removal of 25%. At thermophilic temperature, anaerobic digestion led to an increase of the total solids removal efficiency, while improving NPE degradation (30%). Under thermophilic aerobic condition, the three compounds were removed simultaneously with a NPE removal efficiency higher than under anaerobic condition (39%). This removal is always well correlated to the total solids removal meaning that bioavailability remains the main limiting factor. Combination of either thermophilic aerobic-mesophilic anaerobic or mesophilic anaerobic-ozonation treatments enhanced the NPE removal by comparison to single systems (45% and 48%, respectively). These results confirm the high potential of existing and up-grading sewage sludge treatments to degrade such refractory and aged compounds.  相似文献   
7.

The simultaneous fate of organic matter and 4 endocrine disruptors (3 polycyclic aromatic hydrocarbons (PAHs) (fluoranthene, benzo(b)fluoranthene, and benzo(a)pyrene) and nonylphenols (NP)) was studied during the anaerobic digestion followed by composting of sludge at lab-scale. Sludge organic matter was characterized, thanks to chemical fractionation and 3D fluorescence deciphering its accessibility and biodegradability. Total chemical oxygen demand (COD) removal was 41% and 56% during anaerobic digestion and composting, respectively. 3D fluorescence highlighted the quality changes of organic matter. During continuous anaerobic digestion, organic micropollutants’ removal was 22?±?14%, 6?±?5%, 18?±?9%, and 0% for fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols, respectively. Discontinuous composting allowed to go further on the organic micropollutants’ removal as 34?±?8%, 31?±?20%, 38?±?10%, and 52?±?6% of fluoranthene, benzo(b)fluoranthene, benzo(a)pyrene, and nonylphenols were dissipated, respectively. Moreover, the accessibility of PAH and NP expressed by their presence in the various sludge organic matter fractions and its evolution during both treatments was linked to both the quality evolution of the organic matter and the physicochemical properties of the PAH and NP; the presence in most accessible fractions explained the amount of PAH and NP dissipated.

  相似文献   
8.
The design and management of anaerobic digestion of sewage sludge (SS) require a relevant characterisation of the sludge organic matter (OM). Methods currently used are time-consuming and often insufficiently informative. A new method combining chemical sequential extractions (CSE) with 3D fluorescence spectroscopy was developed to provide a relevant SS characterisation to assess both OM bioaccessibility and complexity which govern SS biodegradability. CSE fractionates the sludge OM into 5 compartments of decreasing accessibility. First applied on three SS samples with different OM stability, fractionation profiles obtained were in accordance with the latter. 3D fluorescence spectroscopy revealed that the bioaccessible compartments were mainly constituted of simple and easily biodegradable OM while the unaccessible ones were largely made of complex and refractory OM. Then, primary, secondary and anaerobically digested sludge with different biodegradabilities were tested. Complexity revealed by 3D fluorescence spectroscopy was linked with biodegradability and chemical accessibility was correlated with sludge bioaccessibility.  相似文献   
9.
Biosolids spread onto agricultural soils are potential sources of steroidal hormones that are able to adversely affect the soil ecosystem. Here we studied the fate of the [4-14C]-17-β-estradiol hormone in laboratory experiments. First, our results show that only 2.9% of the hormone was mineralized in the soil from a French vineyard. By contrast, the mineralization increased to 7.1% when the hormone was provided in composted biosolids. Second, we found that only a minor part of the estradiol-derived 14C was mobile and partly transferred to soil leachates. Indeed, the hormone was mainly stabilized in the soil as non-extractable residues. Overall, our findings show that estradiol undergoes two main processes, complete degradation and stabilisation. We therefore conclude that the environmental risk of hormones provided to the soil through composted biosolids is negligible under the conditions of our experiments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号